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PREFACE 
! 
I 

WELCOMING REMARKS TO PARTICIPANTS   ; 

■ 

Justin H. McCarthy        " \ 

David W. Taylor Naval Ship Research and Development Center 

Bethesda, Maryland, USA 

On behalf of the Commanding Officer, Captain Barrick F. Tibbitts, and the 

Technical Director, Dr. Alan Powell, I welcome you to the David W. Taylor 

Naval Ship Research and Development Center (DTNSRDC).       I 

For the next two days we will be engaged in the Center's Second Workshop 

on Ship Wavemaking Resistance Computations.  There are twenty-one papers to be 

presented: Seven from Japan, one from the Republic of China, one from France, 

one from the United Kingdom, and eleven from North America of which two are from 

Canada.  For those of you who have travelled long distances we are very 

grateful, for the subject of the Workshop is truly of international interest. 

The present Workshop is the third in four years.  The First Workshop was 

held at DTNSRDC in 1979 and was soon followed by a Continued Workshop held at 

Shuzenji, Japan in 1980.  Many impressive results were presented at the earlier 

Workshops.  However, it was apparent that large differences existed between the 

predictions of wave resistance by the various methods, even when the same or 

closely related theories were used.  The goal of the present Workshop is to shed 

further light on the differences and hopefully pave the way for more reliable 

prediction methods. 1 

There are a number of reasons for convening workshops on the prediction of 

wavemaking resistance, a classical and important problem of ship hydrodynamics. 

First, because of the diversity of methods under development, valuable exchanges 

can be made between method developers in a workshop format. Second, establish- 

ment of a "Bank" of numerical predictions for a select group of hull forms can 

help in the evaluation of new methods, and thus promote progress. Finally, the 

present Workshop seems especially timely because progress has been made rapidly 

in the past few years and a number of first generation numerical methods are now 

Vlll 



operational. 

The goals of the present and previous Workshops have been subscribed to and 

enthusiastically supported by members of the Resistance Committee of the 

International Towing Tank Conference (ITTC).  The committee is currently 

assembling an experimental data base on the resistance components of and flow 

about four baseline hull forms, using information supplied by ITTC member orga- 

nizations.  Some of the data are reported at the present Workshop.  All of the 

data will be reported in 1984 and should be useful in evaluating analytical and 

numerical methods for predicting the components of ship resistance. 

Again, I welcome you all to the Workshop, wish you success, and invite you 

to take part in free discussions and exchanges of ideas. 
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SECOND DTNSRDC WORKSHOP ON SHIP WAVE-RESISTANCE COMPUTATIONS 

INTRODUCTION 

Francis Noblesse ' 

David W. Taylor Naval Ship Research and Development Center 

Bethesda, Maryland, USA     . i 

The object of this introduction is to provide a brief overview of the 

studies that were presented at the Workshop and are included in these Proceedings, 

of the theoretical and numerical methods that were used, and of the hull forms for 

which calculations were performed. 

HULL FORMS ■ 

A main goal of both the present and the previous Workshops was to develop 

a "bank of numerical results" for a few selected hull forms.  The creation of 

extensive sets of numerical results, together with corresponding sets of experi- 

mental values, indeed is extremely important, if not indispensable, for objec- 

tively evaluating the merits and limitations of the various existing methods of 

wave-resistance calculation, and for progressing towards the development of 

reliable and practical calculation methods. 

Five hull forms were suggested for the Workshop.  Two of these five hull 

forms were easy choices since they had already been used by a large number of 

Participants at the first Workshop in 1979, and extensive experimental values 

are available.  These two hulls are the Wigley parabolic hull and the Series 60 

block coefficient 0.60 hull, that are defined in detail on pages 89-91 and pages 

95-100, respectively, in Volume 1 of the Proceedings of the 1979 Workshop.   The 

other three "suggested hull forms" were proposed on the basis of suggestions 

received in response to the first announcement for the Workshop. 

Two vertical cylinders (infinite draft), one with a round-ended elliptical 

waterline and the other with a sharp-ended lens-like waterline in the shape of 

an ogive (consisting of two arcs of circle), were suggested by Dr. Eiichi Baba 

for use in the low-speed theories (the zero-Froude-number potential is given by 



simple analytical expressions for these two vertical cylinders).  Both cylinders 

have beam/length ratio, b, equal to 0.15.  Specifically, the equations of the 

waterlines are given by y = ±(b/2) (1-4x2) ^^2 ^^^ ^ ^ ±(1/2) [[{l+h^)'^ / h\p--h^^\^l'^  - 

(1-b )/2b}, where -1/2 < x < I/2, for the ellipse and the ogive, respectively. 

A fully-submerged body was suggested by both Dr. Ming Chang and Professor 

Daniel Euvrard.  Calculations for a fully-submerged body are far simpler than for 

a free-surface piercing hull since the major difficulties arising from the inter- 

section between the hull surface and the free surface obviously are eliminated. 

In this sense, a fully-submerged body may provide a useful intermediate test 

case for the development of a numerical method.  A prolate spheroid with a 5 to 

1 ratio of length to midsection diameter and a ratio of submergence depth (mea- 

sured from the axis of the spheroid to the undisturbed free-surface level) to the 

midsection diameter of 0.792, for which there already exist both experimental 

2 3 data by Farell and Guven  and theoretical results by Farell , was then proposed. 

Specifically, the spheroid is defined by the equation (y +z ) '2 = Q.l (l-4x ) ^ 

where -I/2 ^ x < I/2, and the mean free surface is the plane z = 0.1584. 

Finally, a simple strut-like hull form having constant draft, rectangular 

framelines, and a substantial parallel middle body, and that is sharp at one 

end and round at the other end, was proposed.  It was also suggested that 

calculations be performed for both cases when the hull moves with the sharp end 

ahead (sharp bow/round stern case) and with the round end ahead (round bow/sharp 

stern case).  Specifically, the waterline of this strut-like hull form is defined 

by the equations y = ±(b/2)8x( l-2x) for I/4 < x < I/2, y = ±b/2 for -I/4 < x < I/4, and 

y = ±(b/2) [l-16(x+l/4)2] '2 for -I/2 < x < -I/4, where the beam/length ratio, b, and the 

draft/length ratio, d, are taken as b = 0.15 and d = 0.075. 

In these Proceedings, fourteen papers present either numerical (twelve 

papers) or experimental (two papers) results for the Wigley hull; eight papers 

provide numerical results for the Series 60 hull; and the vertical cylinders, 

the strut-like hull form, and the submerged spheroid are considered in five, four, 

and three papers, respectively.  In addition, numerical results are also pre- 

sented for the HSVA tanker (one paper) and the high-speed ATHENA hull (one paper) 

for which calculations were performed at the 1979 Workshop , for two hull forms 

having a transom stern and a bow dome (two papers), and for a bulk carrier (one 

paper), strut-like hull forms (two papers), vertical elliptical cylinders (one 

paper), and fully-submerged bodies (one paper). 



NUMERICAL METHODS 1 

Two of the twenty-one papers included in these Proceedings present experimen- 

tal data for the Wigley hull and one paper presents a comparison of experimental 

data with numerical results obtained in two other papers by using different 

numerical methods.  The remaining eighteen papers present theoretical and numerical 

results.  These eighteen papers may be classified into four main groups, as 

follows: seven papers present results based on either a thin-ship (four papers) or 

a slender-ship (three papers) approximation of some kind, five papers can be 

grouped under the heading "Neumann-Kelvin theory", three papers make use of 

"Rankine-source distributions", and three papers are based on the "finite- 

difference method". . 1 

This classification, like most such classifications, is arbitrary to some 

extent, and indeed there are close similarities among the foregoing four groups 

of methods that might warrant a different classification.  In particular, the 

methods classified under the headings "thin- or slender-ship approximations" and 

"Neumann-Kelvin theory" rely upon the use of the Green function, G, associated 

with the usual linearized free-surface boundary condition 3G/8z+F 9 G/3x = 0. 

Thus, twelve papers (7+5) out of eighteen, that is two papers out of three, make 

use of the Michell-Havelock Green function.  The methods classified under the 

headings "Neumann-Kelvin theory" and "Rankine-source method" are also closely 

related.  Indeed, both of these methods are "boundary integral equation methods" 

in which the Laplace equation is used to formulate an integral equation of some 

sort, and that integral equation is solved numerically in one way or another. 

The major difference between the "Neumann-Kelvin method" and the "Rankine-source 

method" is that the former method relies upon the Michell-Havelock Green function 

whereas the latter method simple uses the Rankine-source Green function G = -1/4TTR. 

It may then be seen that eight papers (5+3) out of eighteen, that is about one 

paper out of two, are based upon the "boundary integral equation method". 

ARRANGEMENT OF PAPERS j 

In these Proceedings, papers have been arranged in accordance with the 

foregoing classification into "experimental papers" and four groups of "theoretical 

papers".  Specifically, the papers are ordered in the following sequence: two papers 

presenting experimental data for the Wigley hull, four "thin-ship approximation" 



papers, three "slender-ship approximation" papers, five "Neumann-Kelvin theory" 

papers, three "Rankine-source method" papers, one paper that presents a comparison 

of experimental data with numerical predictions obtained by using the Rankine- 

source method and a simple slender-ship approximation, and finally three 

"finite-difference method" papers. 

COMPARISON OF RESULTS 

A major purpose of both the present and the previous Workshops is to pro- 

vide a basis for comparing various sets of numerical results with one another, 

and with corresponding experimental values whenever available.  A fairly large 

body of numerical results have now been obtained, notably for the Wigley hull 

(for which a sizable body of experimental data now also exists) and for the 

Series 60 Cg = 0.60 hull.  A significant amount of time thus is required for 

performing a detailed comparison of all available experimental and theoretical 

values for the several hull forms considered at this and the previous Workshops. 

Preparation of such a comparison has therefore been postponed in order not to 

unduly delay the publication of these Proceedings. 
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The Summary of the Cooperative Experiment 

on Wigley Parabolic Model in 3apan 

The executive members 

1 

H.Kajitani and H.Miyata 

The University of Tokyo 

M.Ikehata 

Yokohama National University 

H.Tanaka and H.Adachi 

Ship Research Institute 

M.Namimatsu and S.Ogiwara 

Ishikawajima-Harima Heavy Industries Co.,Ltd. 

Abstract 

The 16th ITTC Resistance Committee made a proposal of cooperative experimental 

research program for ship resistance and flow around hull to construct standard data 

base. In 3apan three organization, the University of Tokyo (UT), Ship Reseach 

Institute(SRI) and Ishikawajima-Harima Heavy Industries Co.,Ltd.(IHl) responded to 

the proposal of the Committee and Yokohama National University(YNU) joined this 

program in the later time . They conducted the experiments on Wigley parabolic 

model in order to investigate the scale effect of ship resistance using geosim models 

of a 6 m length in IHI, 4 m length in SRI, 2.5 m length in UT and 2 m length in YNU. 

The experiments were separately performed on the following items and cooperatively 

analyzed, 

(1) Resistance test '   i 

(2) Wave pattern analysis 1 

(3) Wake survey i 

W  Wave profile measurement 1 
1 

(5)  Pressure measurement on hull surface 



YNU separately performed the measurement of boundary layer around the hull. 

The   report   of   the   cooperative   experiment   was   presented   to    the    Resistance 

Committee  of  the   17th  ITTC at Varna,  Bulgaria in  September,   1983.    This paper 

describes the summary of the report extracting principal data of experiments in order 

to serve as a reference for the theoretical prediction of ship resistance. 

Nomenclature 

C-f Rj/J-yU S    Total resistance coefficient 

Cw   Rw/|-yU S    Wave resistance coefficient derived from towing test 

C^n Ry^/jfu S    Wave resistance coefficient derived from wave pattern analysis 

Cpo Frictional resistance coefficient (Schoenherr) 

Cpj^ Resistance coefficient derived from integrating hull surface pressure 

Cp Pressure coefficient = (p-p^)/yj*U 

Fn Froude number   = U/\gL 

S Wetted surface area at rest defined by S=Cs.L(2D+B)   Cs=0.661 

L Waterline length (=Lpp for Wigley model) 

B Beam at midship 

D Draft at midship 

H,Ho Total head  (Ho=uVg) 

Rn Reynolds number   = LV/y' 

THL    " Total head loss    =(Hc-H)/Ho 

U Model speed of advance 

b B/2                                                                                         ■                ■ 

dp, Adp Draft at FP, its increase from the rest                                     * 

d^ , Adf\ Draft at AP, its increase from the rest 

g Gravitational acceleration = 9.8 m/sec^ 

k Three dimensional form factor on flat plate skin friction 

kd Wave number   = g/U^ 



1 L/2 

t Trim (positive for bow up) = (dft-dp)/L 

T 2!<oL.t 

s Sinkage  = (Ade+Z\d/\)/2L 

(^ 2kaL.s 

5 Nondimensional wave elevation   = ki,5(x) 

S(x) Wave elevation 

/ Kinematic viscosity 

) Mass density 

x,y,z Coordinate system fixed in space 

x',y',z' Coordinate system fixed in ship 

FR Free to sink and trim 

FX Fixed to sink and trim 

S-FR.T-FX      Free to sink, fixed to trim 



1.   General notes 

A)   Model size 

IHI SRI UT YNU 

L(m) 6.0 t^.O 2.5 2.0 

B (m) 0.6 OA 0.25 0.25 

D(m) 0.375 0.25 0.156 0.125 

Hull form; y = B/L[l-(2x/LfJ [l-(z/Dfj 

B)  Items of experiment 

IHI SRI UT YNU 

1   Resistance test FR FR,FX FR,FX, S-FR.T-FX FR,FX 

2   Wave pattern analysis FR FR,FX FR,FX, S-FR.T-FX FR 

3   Wake survey FR FR FR FR 

^   Wave profile on hull FR FR,FX FR,FX, S-FR.T-FX 

5   Pressure on hull FR FR FR, FX 

C)   Boundary condition 

IHI SRI UT YNU 

Turbulent stimulator stud 

Height*Spacing (mm) at x/l=-0.9 3*10 3*10 2*10 2*10 

Tank section, BT*DT (m) 10*5 18*8 3.5*2.35 8*3.5 

Towing height from keel (mm) 330 235 103 

Speed measurement Current Ground Ground Ground 

speed speed speed speed 



2.   Results of resistance test and wave analysis 

Figure 1 shows the total reststance (CY),frictional resistance(Schoenherr,Cfo), wave 

resistance (Cw) and wave pattern resistance (Cwp) for three models of 6.0m, i4-.0m 

and 2.5m length on the condition of free to sink and trim (FR). Wave resistance is 

derived using form factor on skin friction. 

Wave pattern resistance is derived by the method of Newmwn-Sharma.   Distance of 

measuring plane of wave profile from the center line of the model is as follows, 

IHI        SRI        UT YNU 

y/1 1.667        1.0       l.if 4.0 

Figure 2 shows C-p ,C[=ojCw and Cwp for two models of 't.Om and 2.5m length on the 

condision of FX. 

Figure 3 shows CTJCPOJCW and Cwp for the 2.5m length model on the condition of 

FR, FX and S-FR,T-FX . 

Figure ^- shows the sinkage and trim of three models of 6.0m, 4.0m and 2.5m length. 

Figure 5 shows C-[-,Cpo  jCw and Cwp of the 2.0m length model on the condition of 

FR and FX. 



Fig.l   The results of resistance test and wave pattern analysis 

(Free to sink and trim) 
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rWigley —Model 

Fig.2  The results of resistance test and wave pattern analysis 

(Fixed to sink and trim) 
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Fig.3   The results of resistance test and wave pattern analysis of 2.5m model 

12 



Wigley    "Model 

0.1 0.15 0.2 

0.05 

0.25 0.3 0.35 O.A 

Sinkage  cr= 2KoLs 
(1 ) s _  ^df * Ada 

Fn 

2L 

0.05 

' °' ' ^ ,r.viz^LZL^8^^. i" 
<*■ ■HJ-VI 

(2)—: 
A    t   '=' 

A ■'A^^A*-^ *i- -1       *-A---   A' ^~A*      i 

0.05 

(3) -'^'-^'^-*^ 
-A-»- 

A—i- 
A      i 

i^i 1  i 

,i--^.v-/-^-.- 
A     A      i 

,_ A—A.A''-i!^^. 

*  1- 

Marks e~ ■      1 Trim L(m) T.H. Date Orq. D1 n Kdqe 1 

V (1) Free Free 6.0 0.0550 80.12.26 IHl 
1.0°/= ■ ■'--■ o (1) Free Free    |   4.0 0.0588 81.2.12 SRI 

Trim (1 ) -—■'■  — A (2) Free Free 2.5 G.OAl 1 81.4.27 UT 
'^ (2) .. ., 82.5.13 .. 

-t=--2f-L£a^100- i (7) ^j */    82.5.U 
-A (3)^ Free-- F i X-. 2.5 --- 0.0411 81.4.23 UT   - 

■    1 A (3) ,. 82. 5.7 A 

0.5 A (3) 1    „ " 82. 5.10 " o 

T.H.: Towing Height from Keel :   KT/L ■ 

A 

■   1 o 

" -   ,                               - '-——, 
:    ■    i              '--   i              : ■ - - 1 i    ■    ■    ■         :                  - -- -       <»             A 

0:-  L~'i.~i^': ""■    i              i             '        1 "^~'"'             ;           .. »   ,   ._^ 1 1   - ,                  ~i      \ 

 ^- ' ™"^"^"""^»»«''--»---v„^^,,,,   .    ^    . »a _  ^  
f .. ^2)                , 

i          '     ■ 
A 

.^...._;—.■ .. 

!        ;— -. .                     .....               ., .J_..   „... 
■     - 

,..- 

^- 0 _ ^- i-A^—G-i^»-ii*-x,«ii..i.^ 

^*   Ai      *A 

1 

1 1  '                 1                                  '1 
Fn 

1        1 
0.1 0.15 0.2 0.25 0.3 0.35 O.A 

Fig.'t   The results of sinkage and trim measurement 
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3.  Results of wake survey 

Condition of wake survey 

IHI       SRI UT YNU 

Position of measuring 

section from AP (x/1) 1.0        1.0 1.0 1.0 

Froude number Water Temp(C ) 

IHI (FR) 0.267               0.316 16.6 

SRI (FR) 0.250    0.267   0.289    0.316 10.6 
1 

UT  (FR) 0.250    0.267   0.289    0.316 20.9     'i 

YNU (FR) 0.230    0.276  0.309    0.3^^3    0.377 

Figure 6 shows an example of the contour of nondimensional total head loss {H  -H)/H 

for three models of 6.0m, 'f.Om and 2.5m legth on the condition of FR. 

Figure 7 shows an example of comparison of horizontally integrated total head loss 

for three models of 6.0m, 'f.Om and 2.5m length. 
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4. Results of wave profile measurement on the hull 

Condition of measurements 

Froude number 

IHI (FR) 0.250  0.267  0.289   0.316 

SRI (FR) 0.250   0.267   0.289   0.316 

SRI (FX) 0.250  0.267  0.289   0.316 

UT  (FR) 0.250  0.267   0.287   0.316   0.35^^   0.^08 

UT  (FX) 0.250  0.267   0.289   0.316   0.35t   O.^fOS 

UT(S-FR.T-FX) 0.250   0.267  0.289   0.316   0.354   0.W8 

Figure 8 shows the comarison of wave profile on the hull on the condition of FR, 

where ^ is nondimensional wave elevation ( = g^{x)/U~) 

Table 1 gives nondimensional wave elevation for three models of 6.0m ,ii-.Om and 2.5m 

length. 
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Table 1   The nondimensional wave elevation on the hull 

2M. 

g5/U^ Free L=6.0ni (IHI) 

FN-   .250 FN-   .257 FN-   .289 FN-   .316 

-i.eoB .177 .218 .149 .109 
-.933 .378 .400 .354 .326 
-.9e0 .374 .373 .370 .343 
-.850 .281 .246 .290 .2S4 
-.see .151 .113 .198 .237 
-.703 -.077 -.131 -.010 .068 
-.6e0 -.174 -.1S3 -.149 -.071 
-.sea -.191 -.134 -.181 -.147 
-.400 -.120 -.091 -.157 -.169 
-.303 -.050 -.021 -.108 -.162 
-.203 -.015 .034 -.056 -.111 
-.(33 .022 .024 -.020 -.030 
.eso .014 -.044 .012 -.045 
.100 -.027 -.081 -.003 -.021 
.233 -.073 -.079 -.023 .003 
.303 -.086 -.068 -.050 -.003 
.400 -.080 -.035 -.070 -.015 
.503 -.056 -.013 -.078 -.027 
.603 -.046 -.0O4 -.078 -.043 
.700 -.003 -.011 -.057 -.OS 
.803 .012 -.031 -.037 -.058 
.ESB .013 -.031 -.013 -.054 
.900 .027 .002 .019 -.041 
.933 .070 .045 .072 .000 

1.000 .187 .184 .196 .077 

gj/u"^ Free       L=4.0m     (SRI) 

2XA. FN-   .250 

-i.oeo 
-.933 
-.9C0 
-.833 
-.803 
-.703 
-.603 
-.503 
-.403 
-.203 

.003 

.200 

.403 

.503 

.600 

.703 

.803 

.833 

.903 

.933 
1.003 

.213 

.397 

.338 

.223 

.074 
-.127 
-.192 
-.132 
-.060 
-.033 
-.064 
-.087 
-.034 
-.011 
-.003 
-.023 
-.035 
-.029 
-.009 

.037 

.ISO 

FN-  .267 

.137 

.335 

.340 

.245 

.130 

.OS 

.172 

.181 

.113 

.008 

.017 

.069 

.BS4 

.061 

.023 

.022 

.013 

.esB 

.015 

.070 

.143 

FN-  .289 I FN-  .316 

.121 

.370 

.333 

.266 

.173 
-.021 
-.141 
-.176 
-.142 
-.045 
-.OSS 
-.028 
-.061 
-.035 
-.074 
-.041 
-.030 
-.022 
.011 
.113 
.149 

.123 

.327 

.325 

.275 

.212 

.047 

.093 

.151 

.179 

.103 

.032 

.033 

.023 

.033 

.049 

.033 

.063 

.062 

.035 

.023 

.076 

2X^ 

gj/u^ Fixed L=4.0m (SRI) 

FN-   .250 FN-   .267 FN-   .229 FN-   .316 

-LOGO .192 .175 .186 .155 
-.933 .440 .392 .403 .340 
-.903 .368 .329 .324 .330 
-.833 .248 .252 .258 .275 -.sro .104 .133 .192 .225 
-.700 -.136 -.070 -.006 .045 
-.603 -.160 -.168 -.132 -.075 
-.503 -.120 -.175 -.163 -.143 
-.403 -.032 -.112 -.144 -.15 
-.203 -.016 .000 -.048 -.103 

.003 -.056 -.007 -.012 -.033 

.203 -.030 -.070 -.024 -.DCS 

.403 -.oaa -.070 -.072 -.015 

.500 -.072 -.063 -.084 -.035 

.600 -.048 -.049 -.084 -.045 

.703 .008 .014 -.054 -.060 

.SCO .016 .007 -.042 -.060 

.833 .016 .007 -.024 -.033 

.903 .024 .OOT .006 -.&© 

.933 .080 .042 .084 -.030 
1.003 .224 .154 .162 -.075 
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Table 1 Continured 

2X/1. 

g5/U^       Free       L=2.5 m     (UT) 

FN-   .250    FN-   .257     FN-   .289 FN-   .316 ! FN-   .354 ' FN-  .408 

-1.000 
-.993 
-.9CD 
-.850 
-.820 
-.750 
-.700 
-.650 
-.603 
-.sea 
-.400 
-.300 
-.200 
-.103 

.003 

.100 

.200 

.303 

.400 

.500 

.603 

.703 

.saa 

.900 

.950 
1.000 

.232 

.410 

.360 

.232 

.091 
-.024 
-.100 
-.151 
-.151 
-.112 
-.035 
-.043 
-.043 
-.018 
-.032 
-.070 
-.070 
-.044 
-.017 
-.009 
-.022 
-.023 
-.023 
-.037 

.075 

.178 

.208 

.399 

.377 

.265 

.142 

.033 

.OS 

.126 

.160 

.148 

.081 

.013 

.021 

.032 

.022 

.012 

.056 

.078 

.067 

.033 

.010 

.002 

.013 

.047 

.052 

.160 

.192 

.374 

.365 

.288 

.182 

.077 

.000 

.068 

.116 

.154 

.125 

.077 

.039 

.010 

.009 

.009 

.011 

.030 

.049 

.059 

.059 

.050 

.021 

.021 

.046 

.161 

.170 

.338 

.346 

.298 

.227 

.139 

.033 
-.013 
-.06B 
-.132 
-.156 
-.135 
-.107 
-.065 
-.034 
-.ore 
-.eei 

.000 
-.008 
-.015 
-.031 
-.038 
-.046 
-.029 
-.013 

.035 

.133 

.267 

.324 

.299 

.241 

.184 

.120 

.062 

.004 

.085 

.130 

.137 

.130 

.117 

.038 

.073 

.047 

.028 

.015 

.006 

.002 

.002 

.0O9 

.015 

.010 

.029 

.091 

.232 

.282 

.274 

.237 

.2es 

.13 

.107 

.061 

.018 

.067 

.098 

.123 

.125 

.126 

.119 

.110 

.096 

.080 

.067 

.es9 

.056 

.048 

.026 

.000 

.025 

2X/L 

g5/U^       Fixed     L=2.5 m (UT) 

FN-   .250 FN-   .267 FN-   .2S9 FN-  .316 FN-   .354. FN-   .408 

-1.000 .30/ .246 .192 .160 .128 .085 
-.950 .397 .358 .326 .312 .256 .?1B 
-.900 .346 .335 .346 .328 .307 .288 
-.850 .218 .224 .259 .264 .269 .274 
-.800 .077 .101 .163 .192 .218 .230 
-.750 -.064 -.011 .053 .104 .154 .157 
-.703 -.141 -.090 -.019 .024 .090 .139 
-.650 -.179 -.146 -.086 -.032 .032 .oas 
-.600 -.179 -.168 -.134 -.088 -.026 .043 
-.500 -.128 -.157 -.153 -.144 -.102 -.029 
-.400 -.051 -.112 -.144 -.160 -.141 -.036 
-.303 .026 -.045 -.096 -.136 -.141 -.105 
-.200 .013 -.011 -.058 -.len -.134 -.115 
-.103 -.026 .000 -.019 -.072 -.115 -.120 

.OCO -.077 -.022 -.010 -.048 -.096 -.120 

.lEB -.102 -.056 -.010 -.028 -.077 -.110 

.203 -.090 -.078 -.029 -.016 -.058 -.096 

.300 -.064 -.090 -.048 -.012 -.038 -.082 

.403 -.026 -.078 -.058 -.016 -.026 -.072 

.500 -.013 -.056 -.057 -.032 -.013 -.062 
500 .000 -.034 -.058 -.048 -.013 -.053 

.7e0 -.013 -.011 -.048 -.056 -.019 -.043 

.800 -.013 .003 -.019 -.054 -.025 -.029 

.903 .000 .011 .019 -.040 -.013 -.014 

.933 .026 .056 .048 -.016 .000 -.oes 
1.000 .141 .157 .125 .024 .038 .034 

2X/L 

g5/ U^  FR-s ink.FX- trim L=2.5  m (UT) 

FN-   .250 FN-   .257 FN-   .289 FN-   .316 FN-   .354 FN-   .408 

-l.OtM .236 .206 .188 .174 .132 .OSS 
-.933 .415 .395 .351 .342 .266 .231 
-.900 .354 .374 .351 .333 .324 .2S 
-.850 .723 .251 .275 .2SS .292 .283 
-.800 .082 .128 .169 .206 .241 .264 
-.733 -.033 .016 .063 .IS .177 .220 
-.703 -.110 -.063 -.013 .046 .113 .167 
-.650 -.174 -.141 -.081 -.C2S .055 .114 
-.603 -.174 -.163 -.133 -.074 -.003 .070 
-.503 -.123 -.152 -.157 -.138 -.086 -.012 
-.400 -.033 -.096 -.138 -.154 -.137 -.075 
-.300 .031 -.03 -.090 -.133 -.137 -.115 
-.203 .044 .016 -.042 -.106 -.131 -.125 
-.103 .018 .027 .005 -.066 .118 -.131 

.000 -.046 .016 .015 -.034 -.105 -.125 

.ICO -.085 -.029 .015 -.010 -.079 -.118 

.203 -.085 -.074 .005 -.002 -.054 -.109 

.3C0 -.046 -.074 -.004 -.002 -.035 -.0S5 

.400 -.r.70 -.063 -.013 -.010 -.015 -.077 

.500 .005 -.043 -.033 -.018 -.003 -.033 

.603 .031 -.018 -.033 -.034 -.003 -.045 

.700 .031 .004 -.023 -.042 .004 -.035 

.803 .018 .016 -.004 -.042 -.003 -.027 

.900 .031 .038 .025 -.034 .004 -.019 

.950 .056 .072 .063 -.010 .017 1 .010 
1.003 .184 .184 .159 .022 .055 '• .029 
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5.  Results of pressure measurement on the hull surface 

Condition of pressure measurements 

Froude number 

IHI (FR) O.lO^f   0.250   0.267   0.289   0.316 

SRI (FR) 0.250   0.267   0.289   0.316 

UT  (FR) 0.250   0.267   0.289   0.316 

UT  (FX) 0.250   0.267   0.289   0.316 

Pressure resistance coefficient 

CR^ =   Rp/(yfU^S) 

Fn 

IHI SRI UT 

FR FR                FR FX 

0.250 

0.267 

0.289 

0.316 

0.891x10'^ 

0.916 

1.280 

1.803 

1.150^10"^ 

0.979 

1.37^^ 

1.998 

0.878^10'^ 

0.920 

1.318 

1.866 

0.9^1   10 

0.827 

1.221 

1.786 

Figures 9 through 11 show examples of the pressure distributions on the hull surface 

projected on the midship section for three models of 6.0m, 4.0m and 2.5m length on 

the condition of FR. 

Figure 12 shows the comparison of horizontally integrated pressure for three models 

of 6.0m, 'l.Om, and 2.5m length on the condition of FR. 

Tables 2 through 5 give the pressure coefficient on the hull surface. 
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Table 2  The pressure coefficient on the hull of 6.0m nnodel (FR) 

ST. 
2X/L 

.030 
-.840 
-.120 
-.208 
-.SO 
-.520 
-.683 
-.840 
-.920 

-l.OM 

DIFPINO 

IB.CKO y. Vb0 9.500 
-1.003 -.993 -.900 

.000 .139 .113 

.959 .135 .100 

.962 .126 .077 

.976 .117 .058 

.987 .098 .035 

.992 .077 .026 

.934 .061 .022 

.994 .049 .020 

.000 .044 .019 

.000 .040 .018 

.0016 .0016 .0016 

9.250 
-.850 

9.000 
-.800 

8.500 
-.7eo 

8.000 
-.600 

7.503 
-.500 

7.000 
-.408 

6.003 
-.200 

5.500 
-.ICB 

5.000 
>O00 

.026 

.022 

.014 

.008 
-.001 
-.003 
-.004 
-.005 
-.014 
-.004 

.0016 

.000 
-.046 
-.034 
-.026 
-.021 
-.022 
-.021 
-.018 
-.016 
-.015 

-.014 
-.017 
-.023 
-.029 
-.038 
-.042 
-.041 
-.035 
-.032 
-.028 

.0016       .0015 

-.009 
-.014 
-.024 
-.033 
-.045 
-.048 
-.045 
-.039 
-.035 
-.030 

.0015 

-.046 
-.046 
-.047 
-.048 
-.048 
-.047 
-.044 
-.039 
-.035 
-.030 

.0015 

.000 
-.084 
-.053 
-.051 
-.046 
-.044 
-.041 
-.036 
-.034 
-.031 

.0015 

.000 
-.046 
-.046 
-.046 
-.044 
-.041 
-.036 
-.033 
-.033 
-.034 

.0014 

.000 
-.052 
-.054 
-.053 
-.046 
-.040 
-.037 
-.034 
-.033 
-.031 

.OO0 
-.054 
-.060 
-.063 
-.060 
-.052 
-.041 
-.038 
-.036 
-.037 

.0014       .0014 

ST. 
2'KA. 

Z/D 
.000 

-.CMO 
-.120 
-.200 
~.3£a 
-.520 
-.680 
-.840 
-.520 

-1.000 

DIPPINO 

5.003 
.003 

4.500 
.100 

.000 

.200 
.003 
.400 

2.500 
.500 

2.000 
.600 

1.500 
.700 

.003 

.800 
.750 
.850 

.500 

.900 
.250 
.950 

.003 
1.000 

.000 
-.054 
-.060 
-.063 
-.060 
-.052 
-.041 
-.033 
-.036 
-.037 

.CKK) 
-.055 
-.057 
-.058 
-.057 
-.054 
-.052 
-.047 
-.044 
-.042 

.000 
-.056 
-.056 
-.055 
-.048 
-.044 
-.038 
-.034 
-.032 
-.031 

-.037 
-.039 
-.044 
-.048 
-.053 
-.053 
-.049 
-.043 
-.039 
-.034 

-.046 
-.045 
-.044 
-.045 
-.048 
-.052 
-.049 
-.044 
-.043 
-.038 

.0014       .0014       .0013 .0013       .003 

.000 
-.044 
-.043 
-.043 
-.044 
-.046 
-.044 
-.041 
-.039 
-.038 

.0012 

.000 
-.039 
-.034 
-.033 
-.033 
-.035 
-.036 
-.034 
-.033 
-.032 

-.018 
-.017 
-.015 
-.013 
-.012 
-.018 
-.024 
-.023 
-.022 
-.018 

.0012       .0012 

.001 

.001 

.oe4 

.005 

.003 

.007 

.014 

.012 

.009 

.007 

.0012 

.030 

.031 

.035 

.036 

.030 

.018 

.007 

.004 

.004 

.006 

.0012 

.083 

.083 

.084 

.084 

.080 

.070 

.054 

.034 

.024 

.016 

.0012 

.159 

.157 

.155 

.153 

.151 

.147 

.127 

.083 

.054 

.021 

.0011 

Fn  = 0.250 Free       L =6.0 m     (IHI) 

ST. 10.000 9.750 9.503 9.250 9.000 8.500 8.005 7.500 7.000 6.000 5.sea 5.000 
2X/L 

Z/D 
.200 

-1.000 -.950 -.900 -.850 -.803 -.700 -.600 -.500 -.400 -.200 -.ira .003 

.000 .000 .372 .000 .000 .000 .000 .000 .000 .000 .000 .000 
.120 .000 .266 .325 .239 .000 .000 .000 .000 .000 .000 .000 .000 
.040 .000 .243 .283 .213 .097 .000 .000 .000 .000 .000 .000 .000 
.000 .974 .233 .264 .200 .090 .000 .000 .000 .000 .012 -.007 .000 

-.ewo .979 .224 .246 .188 .083 -.097 .000 .000 -.030 .011 -.009 -.065 
-.120 .986 .205 .216 .165 .071 -.091 -.168 -.153 -.067 .003 -.014 -.068 
-.203 .991 .188 .189 .144 .059 -.086 -.158 -.144 -.059 .006 -.018 -.068 
-.360 .997 .158 .147 .107 .039 -.077 -.139 -.124 -.055 .001 -.023 -.061 
-.520 .998 .130 .116 .077 .024 -.063 -.119 -.101 -.061 -.005 -.026 -.052 
-.eso .998 .105 .093 .054 .014 -.058 -.099 -.032 -.058 -.012 -.027 -.045 
-.840 .999 .082 .076 .040 .009 -.046 -.079 -.071 -.052 -.019 -.027 -.041 
-.920 .000 .071 .069 .036 .008 -.039 -.070 -.068 -.047 -.023 -.028 -.040 

-1.030 .000 .061 .063 .034 .006 -.034 -.061 -.065 -.046 -.027 -.028 -.040 

DIPPING .0101 .0100 .0100 .0099 .0098 .0096 .0094 .0032 .0090 .0087 .OOffS .0OS3 

ST. 5.033 4.500 4.0O3 3.0Q3 2.503 2.000 1.503 1.000 .750 .503 .250 .000 
2XA. 

Z/0 
.aoo 

.000 .100 .203 .403 .500 .600 .700 .800 .850 .903 .950 1.0Q3 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
.120 .000 .000 .030 .000 .000 .000 .000 .000 .000 .000 .ooo .000 
.040 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .176 
.030 , 000 .000 -.032 -.022 -.022 -.013 -.029 .000 -.029 -.011 .038 .174 

-.OAS) -.065 -.100 -.034 -.027 -.020 -.012 -.026 -.035 -.026 -.008 .042 .173 
-.120 -.068 -.095 -.037 -.034 -.019 -.013 -.022 -.029 -.023 -.005 .048 .173 
-.330 -.068 -.090 -.040 -.040 -.020 -.016 -.021 -.026 -.022 -.004 .053 .174 
-.360 -.061 -.079 -.045 -.046 -.028 -.024 -.026 -.027 -.023 -.006 .054 .177 
-.520 -.052 -.067 -.048 -.047 -.033 -.030 -.031 -.030 -.024 -.007 .048 .170 
-.680 -.045 -.058 -.049 -.046 -.035 -.034 -.033 -.028 -.023 -.005 .039 .147 
-.840 -.041 -.052 -.050 -.041 -.033 -.034 -.032 -.025 -.020 -.002 .028 .099 
-.920 -.040 -.052 -.049 -.038 -.031 -.032 -.030 -.023 -.016 .000 .022 .064 

-1.000 -.040 -.051 -.049 -.034 -.029 -.030 -.029 -.020 -.011 .003 .016 .021 

DIPPING .0083 .ocvn .0079 .0076 .0074 .0072 .0070 .eoea .0068 .0067 .PXVfi .0O65 
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Table 2      Continured 

Yn = 0.267       Free      L=6.0 m     (IHI) 

ST. 
2XA. 

Z/0 
.2aB 
.120 
.040 
.too 

-.B40 
-.120 
-.230 
-.360 
-.520 
-.&S0 
-.840 
-.920 

-i.eEO 

DIPPIN3 

10.DCS 
-i.ooa 

9.750 
-.933 

9.508 
-.900 

9.238 
-.838 

9.000 8.500 
-.700 

8.000 
-.600 

7.500 
-.500 

7.B0O 
-.400 

6.000 
-.200 

5.500 
-.100 

5.000 
.0e0 

.000 

.000 

.eoo 

.974 

.979 

.98S 

.991 

.997 

.998 

.993 

.999 

.000 

.000 

.000 

.250 

.230 

.221 

.212 

.195 

.178 

.149 

.124 

.100 

.0S0 

.069 

.059 

.0120       .0119 

.350 

.309 

.271 

.254 

.238 

.208 

.183 

.142 

.113 

.091 

.074 

.067 

.061 

.0118 

.000 

.259 

.226 

.211 

.197 

.170 

.147 

.106 

.075 

.057 

.044 

.041 

.040 

.0117 

.000 

.000 

.136 

.127 

.119 

.102 

.087 

.058 

.037 

.023 

.017 

.016 

.016 

.0116 

.000 

.000 

.000 

.000 

.060 

.058 

.056 

.052 

.048 

.043 

.035 

.030 

.024 

.0114 

.000 

.000 

.000 

.000 

.000 

.159 

.146 

.131 

.115 

.897 

.876 

.065 

.053 

.8112 

.000 

.0OO 

.000 

.000 

.000 

.173 

.163 

.141 

.119 

.100 

.083 

.075 

.068 

.0110 

.000 

.000 

.000 

.000 

.000 

.123 

.112 

.103 

.096 

.081 

.067 

.063 

.061 

.01OB 

.000 

.000 

.0&a 

.006 

.007 

.003 

.010 

.012 

.016 

.021 

.026 

.029 

.032 

.8104 

.000 

.C0O 

.000 

.011 

.010 

.007 

.003 

.005 

.012 

.817 

.020 

.020 

.021 

.8102 

.000 

.OO0 

.003 
-.009 
-.012 
-.016 
-.013 
-.019 
-.021 
-.024 
-.026 
-.026 
-.025 

.0100 

ST. 5.0CO 4.500 4.008 
2X/\. .ooa .100 .^sdii 

Z/D 
.200 .000 .000 .000 
.120 .000 .000 .000 
.040 .000 .000 .000 
.eoo -.009 .000 .000 

-.040 -.012 -.054 -.085  - 
-.120 -.016 -.054 -.081  - 
-.200 -.018 -.052 -.077 
-.360 -.019 -.046 -.068  - 
-.520 -.021 -.043 -.059  - 
-.6S0 -.024 -.040 -.052  - 
-.S40 -.026 -.038 -.047  - 
-.920 -.026 -.036 -.044 
-1.000 -.025 -.035 -.042  - 

DIPPIN8 .8180 .0036 .8095 

3.000 
.400 

2.500 
.500 

.008 

.600 
1.500 

.700 
1.000 .733 

.SSO 
.500 
.900 

.238 

.938 
. 003 

1.003 

.000 

.000 

.000 

.000 

.085 

.084 

.083 

.077 

.070 

.064 

.058 

.054 

.049 

.0092 

.800 

.800 

.000 

.000 
-.065 
-.064 
-.064 
-.064 
-.063 
-.060 
-.055 
-.051 
-.047 

.0090 

.800 

.000 

.000 

.000 
-.041 
-.040 
-.042 
-.047 
-.049 
-.051 
-.047 
-.044 
-.041 

.000 

.000 

.000 

.026 

.023 

.019 

.018 

.024 

.029 

.030 

.031 

.038 

.029 

.toss 

.000 

.000 

.000 
-.009 
-.006 
-.003 
-.001 
-.004 
-.010 
-.012 
-.012 
-.010 

.000 

.000 

.000 

.007 

.003 

.008 

.009 

.008 

.001 

.008 

.005 

.800 

.006 

.O0£3 

.800 

.800 

.000 

.027 

.029 

.032 

.033 

.829 

.016 

.009 

.012 

.015 

.013 

.000 

.BOO 

.064 

.067 

.070 

.074 

.076 

.076 

.068 

.056 

.044 

.037 

.027 

.ooai 

.000 

.185 

.183 

.182 

.182 

.183 

.186 

.192 

.135 

.157 

.106 

.071 

.031 

Fn = 0.289       Free       L=6.0 m     (IHI) 

ST. 
2XA. 

ZyQ 
.200 
.120 
.040 
.033 

-.040 
-.120 
-.230 
-.360 
-.520 
-.€£0 
-.840 
-.320 

-1.000 

DIPPIN3 

10.ceo 
-LOGO 

9.738 
-.950 

9.500 
-.900 

9.233 
-.838 

9.000 
-.8sa 

8.500 
-.708 

8.000 
-.600 

7.500 
-.503 

7.000 
-.400 

6.000 
-.200 

5.500 
-.108 

5.003 
.003 

.000 .000 .310 .291 

.000 .225 .279 .259 

.000 .205 .250 .229 

.968 .196 .236 .214 

.972 .188 .222 .200 

.979 .173 .198 .175 

.985 .159 .176 .152 

.993 .137 .139 .113 

.997 .118 .111 .087 

.998 .098 .090 .068 

.998 .077 .074 .054 

.000 .066 .067 .049 

.000 .056 .061 .045 

.0127 .012 .0126 .OIZ 

.000 

.187 

.165 

.154 

.144 

.124 

.106 

.075 

.054 

.041 

.032 

.028 

.024 

.8125 

.000 

.000 

.000 

.020 

.020 

.020 

.020 

.020 

.019 

.019 

.017 

.016 

.014 

.0124 

.000 

.000 

.000 

.000 

.000 

.120 

.113 

.101 

.089 

.075 

.060 

.053 

.046 

.0123 

.000 

.000 

.000 

.000 

.000 

.171 

.165 

.146 

.121 

.100 

.079 

.073 

.068 

.0123 

.000 

.000 

.000 

.000 

.000 

.ISO 

.150 

.134 

.117 

.100 

.084 

.079 

.074 

.8122 

.000 

.000 

.000 
,000 
.057 
.057 
.057 
.054 
.849 
.048 
.050 
.052 
.053 

.0128 

.000 

.000 

.000 

.014 

.015 

.813 

.020 

.026 

.028 

.029 

.031 

.033 

.035 

.8120 

.000 

.000 

.000 

.006 

.002 

.003 

.009 

.015 

.018 

.022 

.022 

.024 

.025 

.0119 

ST. 
2X/1. 

Z^ 
.230 
.120 
.040 
.000 

-.040 
-.120 
-.230 
-.360 
-.520 
-.680 
-.840 
-.920 

-i.oao 

DIPPING 

5.000 
.003 

4.500 
.100 

4.000 
.200 

.000 .000 .800 

.000 .000 .000 

.000 .000 . 000 

.006 -.003 -.025 

.802 -.005 -.026 -. 
-.003 -.009 -.027 —. 
-.009 -.012 -.028 -. 
-.015 -.016 -.029 —. 
-.018 -.013 -.029 -. 
-.022 -.024 -.028 —. 
-.022 -.024 -.028 -. 
-.024 -.025 -.027 —. 
-.025 -.025 -.026 —, 

.8119 .0112 .8117 

3.800 2.500 2.000 1.500 1.008 .738 .508 .238 .000 

.400 .500 .eoa .700 .800 .850 .900 .933 1.0CO 

.800 . 000 .000 . 000 .000 .000 .800 .000 .000 

000 .000 .000 .000 .£30 .000 .000 .000 .175 
000 000 .000 .000 .000 .800 .000 .065 .178 

.000 .000 .000 -.040 -.019 .010 .069 .188 

- 071 -.0S0 -.0S2 -.068 -.839 -.017 .013 .072 .182 

-.072 -.079 -.078 -.065 -.036 -.014 .017 .076 .185 

-.071 -.078 -.076 -.064 -.036 -.814 .016 .078 .191 
-.065 -.074 -.076 -.066 -.041 -.0.^0 .010 .873 .193 
- 060 -.871 -.074 -.066 -.046 -.028 .001 .061 .191 

- 055 -.066 -.070 -.064 -.046 ^.029 -.003 .049 .155 
-.051 -.059 -.064 -.060 -.041 -.024 .000 .033 .112 

- 047 -.056 -.061 -.056 -.037 -.020 .003 .031 .075 

-.044 -.053 -.058 -.053 -.033 -.013 .007 .023 .030 

0116 .0113 .8114 .0113 .8113 .0112       .8112 .0111 .0111 
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Table 2      Continued 

Fn =  0.316       Free       L=6.O m     (IHI) 

ST. 10.020 9.750 9.500 9.250 9.000 8.503 S.OOO 7.500 
ZX./L -1.003 -.933 -.903 -.850 -.800 -.703 -.500 -.500 

.330 .000 .213 .260 .261 .233 .000 .000 . 000 

.120 .000 .196 .238 .233 .203 .000 .000 .000 .E«a .000 .181 .217 .208 .175 .038 .000 .000 .030 .9S2 .174 .206 .196 .162 .038 .000 .000 -.CMO .9S5 .168 .197 .184 .150 .033 - 056 000 -.120 .990 .157 .177 .163 .128 .027 -.060 -. 133 -.330 .994 .14S .159 .143 .110 .022 -.063 -.133 -.360 .997 .128 .130 .110 .083 .014 -.067 -.125 -.5?0 .998 .110 .106 .086 .065 .008 -.060 -.107 -.es3 .998 .092 .086 .069 .050 .005 -.048 -.085 -.840 .998 .072 .069 .057 .040 .005 -.036 -.068 -.s?a .000 .061 .062 .052 .038 .006 -.032 -.062 i.eoo .000 .050 .056 .048 .036 .008 -.027 -.059 

DIFPINS .0173 .0172 .0171 .0169 .0168 .Olffi .0162 .OIGO 

7.000 
-.400 

6.000 
-.203 

.000 

.000 

.000 

.000 

.000 

.169 

.159 

.141 

.122 

.102 

.086 

.081 

.077 

.0157 

.000 

.000 

.000 

.000 

.000 

.124 

.118 

.103 

.089 

.080 

.077 

.076 

.077 

.OlS 

.000 

.0GS3 

.000 

.ei30 
-.078 
-.078 
-.076 
-.074 
-.068 
-.061 
-.066 
-.061 
-.063 

.0149 

.0O0 

.oca 

.000 
-.042 
-.045 
-.046 
-.047 
-.045 
-.043 
-.043 
-.044 
-.045 
-.045 

.0146 

ST. 
2xn. 

ZA> 
.Tsa 
.120 
.(MO 
.030 

-.cwa 
-.120 
-.330 
-.XO 
-.520 
-.680 
-.S«l 
-.920 

-1.030 

DIFPINP 

5.003 
.000 

4.503 
.100 

4.000 
.203 

3.000 
.400 

2.5(20 
.500 

2.0C0 
.620 

1.500 
.700 

1.000 
.800 

.000 

.000 

.000 

.042 

. C143 

.046 

.047 

.045 

.043 

.043 

.045 

.045 

.000 

.000 

.000 

.015 

.019 

.023 

.025 

.026 

.028 

.030 

.032 

.033 

.034 

.0146       .0143 

.000 

.000 

.000 
-.009 
-.010 
-.011 
-.013 
-.017 
-.021 
-.022 
-.023 
-.023 
-.023 

.0141 

.000 

.000 

.000 

.022 

.022 

.023 

.023 

.022 

.023 

.026 

.026 

.024 

.021 

.0135 

.000 

.000 

.000 

.039 

.038 

.035 

.035 

.036 

.038 

.038 

.036 

.034 

.032 

.000 

.000 

.000 

.000 

.053 

.052 

.051 

.051 

.050 

.050 

.047 

.045 

.044 

.0132       .0133 

.000 

.000 

.000 

.000 

.062 

.061 

.059 

.059 

.059 

.057 

.053 

.052 

.051 

.0127 

.000 

.000 

.000 

.000 

.061 

.058 

.057 

.058 

.059 

.057 

.050 

.047 

.043 

.0124 

.733 

.850 
.503 
.900 

.250 

.950 

.000 

.000 

.000 

.000 

.054 

.052 

.051 

.052 

.055 

.054 

.046 

.041 

.033 

.0123 

.000 

.000 

.000 

.041 

.040 

.037 

.037 

.039 

.040 

.039 

.032 

.027 

.022 

.0122 

.000 

.000 

.000 

.003 

.005 

.008 

.009 

.010 

.005 

.000 

.004 

.008 

.012 

.0133 

.000 
l.OQO 

.000 

.000 

.091 

.098 

.105 

.117 

.127 

.140 

.138 

.116 

.065 

.030 

.008 

.0119 

31 



Table 3  The pressure coefficient on the hull of 'f.Om model (FR) 

Fn  = 0.250 Free L= 4.0 m (SRI) 
ST. 10.000 9.750 9.500 9.250 9.020 8.500 s.oea 7.500 7.000 6.000 5.500 5.003 

2X^ 
Z/O        1 
.200 

-1.000 -.950 -.900 -.850 -.800 -.700 -.600 -.500 -.420 -.200 -.100 .oeo 

.000 .000 .326 .000 .000 .000 .000 .000 .000 .000 .000 .020 
.123 1.000 .278 .311 .216 .000 .000 .000 .000 .000 .000 .000 000 
.wa 1.000 .246 .274 .194 .066 .000 .0O0 .O0O .000 .000 .000 .000 

-.040 1.000 .217 .204 .174 .053 -.109 .000 .000 -.068 .004 -.018 -.072 
-.120 1.000 .197 .179 .154 .049 -.105 -.169 -.146 -.067 -.007 -.022 -.099 
-.230 1.000 .182 .162 .132 .047 -.096 -.158 -.131 -.069 -.013 -.028 -.098 
-.3&B 1.000 .154 .123 .090 .030 -.073 -.131 -.111 -.070 -.026 -.043 -.061 
-.520 1.000 .124 .090 .058 .ee2 -.070 -.112 -.094 -.065 -.030 -.033 -.046 
-.680 1.000 .060 .054 .013 -.005 -.054 -.086 -.077 -.054 -.035 -.035 -.052 
-.840 1.000 .0643 .054 .013 -.005 -.054 -.086 -.077 -.054 -.034 -.028 -.039 
-.920 1.000 .057 .052 .011 -.015 -.051 -.078 -.078 -.056 -.036 -.025 -.045 

-l.BSO 1.000 .063 .017 .023 .011 -.054 -.054 -.063 -.058 -.030 -.029 -.074 

DIPPING .0070 .0069 .0068 .0068 .0067 .0066 .tees .O0fi3 .OOfi? .0060 .0058 .0057 

ST. 5.000 4.500 4.005 3.000 2.500 2.0U9 i.bas i.oeo .750 .500 .250 .000 
2X/1. 

Z/D 
.230 

.000 .100 .200 .400 .500 .600 .700 .803 .»=») .900 .950 1.0CB 

.000 .000 .000 .000 .000 .000 .000 . 000 .000 . 000 .000 .000 
.120 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
.040 .000 .000 .000 .000 .000 .000 .000 .000 .000 .oao .045 .070 

-.040 -.072 -.099 -.102 -.048 -.039 -.027 -.028 -.044 -.038 -.031 .029 .099 
-.120 -.099 -.088 -.103 -.050 -.032 -.022 -.035 -.043 -.034 -.031 .037 .114 
-.200 -.098 -.081 -.096 -.054 -.041 -.022 -.038 -.047 -.034 -.030 .042 .127 
-.360 -.061 -.072 -.091 -.056 -.046 -.029 -.036 -.042 -.034 -.024 .042 .144 
-.520 -.046 -.066 -.075 -.061 -.045 -.032 -.044 -.049 -.038 -.027 .035 .114 
-.680 -.052 -.057 -.058 -.051 -.043 -.026 -.050 -.044 -.042 -.026 .022 .083 
-.840 -.039 -.045 -.062 -.051 -.039 -.035 -.042 -.044 -.040 -.018 .014 .050 
- 920 -.046 -.052 -.048 -.043 -.038 -.035 -.039 -.053 -.038 -.005 .010 .020 

-1.000 -.074 -.062 -.061 -.074 -.036 -.063 -.033 -.038 -.006 -.030 -.018 .002 

DIFPING .0057 .0056 .0054 .0052 .0051 .00^ .0048 .0O47 .0046 .0O« .0045 .0044 

Fn = 0.267       Free       L=4.0 m     (SRI) 

ST. 
2X/1. 

Z/O 
.2sei 
.120 
.040 

-.040 
-.120 
-.250 
-.360 
-.520 
-.££33 
-.840 
-.920 

-1.000 

DIPPING 

10.003 
-1.000 

9.750 
-.950 

9.500 
-.900 

9.230 
-.850 

9.000 
-.803 

8.500 
-.720 

.312 .334 .000 .000 
1.000 .259 .303 .232 .000 
1.000 .226 .252 .213 .112 
1.000 .204 .203 .187 .090 
1.000 .189 .177 .165 .081 
1.000 .175 .162 .144 .V{ 1 
1.000 .153 .127 .102 .053 
1.000 .125 .095 .070 .021 
1.000 .095 .079 .043 .013 
i.e«ao .063 .060 .023 .oaa 
1.000 -.060 -.058 -.020 -.003 
1.000 .066 .022 .031 .02? 

.0079 .0078 .0077 .0077 .ecTi 

ST. 
2X/1. 

Z/O 
.200 
.120 
.040 

-.ena 
-.120 
-.200 
-.3SB 
-.520 
-.683 
-.&40 
-.920 

-1.030 

DIPPING 

.000 

.000 

.000 

.049 

.051 

.053 

.041 

.043 

.047 

.038 

.036 

.039 

5.000 
.000 

4.500 
.100 

4.000 
.200 

3.000 
.400 

2.500 
.500 

.000 .000 .000 .000 

.000 .0OB .000 .000 
107' .000 .000 .000 

-.028 -.054 -.084 -.084 
-.053 -.046 -.088 -.088 
-.014 -.043 -.081 -.osa 
-.035 -.041 -.077 -.082 
-.025 -.043 -.062 -.081 
-.036 -.039 -.053 -.067 
-.027 -.032 -.054 -.064 
-.036 -.040 -.042 -.057 
-.062 -.050 -.054 -.088 

.0068 .0067 .0065 .DOS' 

.000 

.000 

.000 
-.075 
-.069 
-.075 
-.074 
-.069 
-.064 
-.055 
-.053 
-.049 

.0063 

.000 

.OC50 

.000 

.043 

.039 

.038 

.045 

.048 

.040 
■.046 
■.04S 
-.076 

8.000 
-.600 

7.503 
-.5e>-- 

7.000 
-.403 

6.000 
-.2ca 

5.500 
-.100 

.000 

.000 

.000 

.000 

.155 

.146 

.123 

.104 

.096 

.081 

.073 

.048 

.0075       .0074 

.000 

.000 

.000 

.000 

.177 

.157 

.130 

.107 

.097 

.084 

.086 

.069 

.0073 

.000 

.000 

.000 
-.114 
-.114 
-.110 
-.104 
-.089 
-.085 
-.067 
-.069 
-.072 

.0072 

.000 

.000 

.000 

.012 

.022 

.027 

.038 

.039 

.042 

.041 

.042 

.036 

.0070 

.000 

.ooo 

.015 

.0O4 

.004 

.009 

.029 

.022 

.027 

.022 

.020 

.024 

.0069 

2.000 
.600 

.503 

.700 
.000 
.800 

.750 

.850 
.5e0 
.900 

.250 

.950 

.000 

.000 

.003 

.014 

.022 

.025 

.025 

.036 

.043 
■.035 
■.030 
-.024 

.0062       .0061 

.000 

.000 

.000 

.010 

.013 

.015 

.014 

.025 

.022 

.024 
■.033 
■.□20 

.0060 

.000 

.000 

.eoo 

.000 

.001 

.002 

.001 

.0O9 

.016 

.017 

.025 

.020 

.0039 

.000 

.000 

.014 

.007 

.006 

.006 

.009 

.001 

.001 

.006 

.021 

.008 

.0OS 

.000 

.000 

.051 

.ess 

.064 

.069 

.067 

.061 

.046 

.037 

.035 

.004 

.0058 

.0068 

.000 
1.003 

.000 

.000 

.101 

.116 

.123 

.123 

.121 

.137 

.100 

.069 

.043 

.025 

.0057 
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Table 3      Continued 

Fn = 0 289 Free L=4 0 m (SRI) 

ST. 10.003 9.733 9.5CJ3 9.250 9.000 8.5GB 8.000 7.503 7.000 6.009 5.503 5.003 
2Xn. 

.200 

-l.OCB -.950 -.900 -.850 -.800 -.700 -.603 -.500 -.4C3 -.200 -.103 .003 

1.000 .259 .321 .260 .000 .000 .000 .000 .000 .000 .COO .BOO 
.120 i.eaa .229 .269 .239 .161 .081 .000 .000 .kStJO .000 .000 .oco 
.040 1.000 .200 .228 .211 .142 .014 .000 .000 .000 .000 .011 .006 

-.040 1.000 .186 .191 .186 .117 .007 -.092 -.125 .000 -.060 -.020 -.016 
-.120 1.000 .174 .171 .166 .107 -.002 -.117 -.183 -.153 -.069 -.023 -.041 
-.200 1.000 .165 .153 .146 .098 -.008 -.112 -.157 -.147 -.069 -.031 -.018 
-.XO 1.OC0 .146 .124 .103 .069 -.006 -.097 -.132 -.132 -.074 -.048 -.035 
-.520 1.000 .120 .096 .074 .034 -.017 -.0S3 -.107 -.114 -.069 -.038 -.046 
-.esa 1.0C3 .093 .088 .047 .026 -.025 -.079 -.096 -.104 -.066 -.040 -.043 
-.840 1.003 .062 .062 .026 ,019 -.021 -.057 -.CS3 -.031 -.060 -.032 -.049 
-.S20 1.000 .C59 .061 .025 .007 -.020 -.059 -.083 -.032 -.059 -.023 -.040 

-l.BZffl 1.0C3 .066 .023 .037 .032 -.025 -.037 -.067 -.033 -.051 -.032 -.060 

DIPPING .rew7 .0::s7 .Tven .fSTffU .OOflB .repp. .0086 .tVS=R .0(¥fi .0034 .0084 .0033 

ST. 5.000 A.bM 4.&S2i 3.000 2.500 2.003 l.SOT l.OCO .750 .500 .250 .000 
2XA. 

Z/D 
.2SB 

.003 .120 .200 .400 .5ea .603 .700 .833 .833 .900 .950 1.000 

.exM .003 .000 .000 .000 .000 .000 .000 .000 .eo0 , 000 .000 
.120 .000 .000 .000 .000 .030 .000 .000 .000 .000 .000 .000 .000 
.040 .006 .000 .000 .000 .000 .000 ,000 .000 .000 .001 .078 .170 

-.040 -.016 -.013 -.032 -.068 -.088 -.076 -.056 -.043 -.026 -.003 .073 .166 
-.120 -.041 -.eea -.040 -.074 -.081 -.072 -.064 -.047 -.022 -.004 .076 .167 
-.aao -.018 -.008 -.035 -.072 -.085 -.071 -.066 -.053 -.022 -.004 .074 .168 
-.xo -.035 -.013 -.038 -.068 -.081 -.063 -.063 -.045 -.026 .003 .066 .152 
-.520 -.046 -.021 -.031 -.069 -.073 -.069 -.071 -.056 -.035 -.011 .057 .141 
-.680 -.D4a -.022 -.023 -.056 -.066 -.069 -.074 -.051 -.040 -.012 .039 -.102 
-.840 -.049 -.017 -.033 -.054 -.058 -.061 -.062 -.050 -.033 -.006 .028 .060 
-.920 -.040 -.027 -.023 -.049 -.057 -.061 -.056 -.059 -.047 .010 .026 .037 

-1.000 -.062 -.039 -.038 -.083 -.054 -.092 -.048 -.044 .0O4 -.016 -.007 .006 

DIFPING .0CS3 .nfTf .0383 .0082 .raw? .eosi .0081 .0O?n .00?B .0033 .0033 .iwvi 

Fn = 0. 316 Free L=4 0 m (SRI) 

ST. 10.0C0 9.750 9.500 9.293 9.0O3 8.500 8.000 7.503 7.003 6.000 5.500 5.000 
2XA. 

Z/0 
.280 

-1.000 -.933 -.903 -.a=«) -.800 -.700 -.6oa -.503 -.400 -.203 -.100 .oeo 
.000 .000 .319 .000 .000 .003 .000 .000 .000 .000 .030 .000 

.200 1.000 .226 .284 .251 .000 .000 .000 .000 .000 .000 .000 .000 

.120 1.000 .196 .242 .231 .180 .000 .000 .000 .000 .000 .000 .000 

.e40 1.000 .178 .204 .199 .153 .065 .000 .000 .000 .000 .000 .000 
-.G40 1.033 .169 .178 .177 .133 .ess -.059 .000 .000 .000 -.075 -.053 
-.120 1.003 .162 .159 .159 .120 .043 -.063 -.163 T.175 -.122 -.077 -.071 
-.230 1.000 .155 .143 .141 .109 .035 -.070 -.139 -.151 -.120 -.031 -.094 
-.560 1.003 .143 .117 .106 .079 .029 -.065 -.117 -.142 -.118 -.095 -.070 
-.520 1.000 .117 .094 .075 .043 .013 -.057 -.096 -.121 -.104 -.075 -.046 
-.680 1.000 .(790 .080 .050 .035 -.031 -.053 -.035 -.110 -.095 -.071 -.062 
-.840 1.000 .061 .064 .029 .026 -.003 -.051 -.074 -.086 -.035 -.060 -.045 
-.920 1.000 .060 .078 .030 .014 -.DCS -.044 -.075 -.036 -.084 -.054 -.053 

-1.000 1.000 .065 .023 .040 .035 -.009 -.028 -.059 -.086 -.074 -.057 -.083 

DIPPING .0117 .0115 .0115 .0114 .0114 .0112 .0110 .oies .0107 .0104 .0102 .0100 

ST. 5.0CO 4.503 4.000 3.000 2.503 2.003 1.500 1.0OD .750 .503 .250 .030 
2X/L 

Z/D 
.280 

.000 .103 .200 .400 .503 .603 .703 .803 .850 .900 .953 1.003 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
.2X1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
.120, .003 .000 .000 .000 .000 .000 .000 .000 .003 .000 .000 .000 
.B40 .000 .oco .003 .000 .000 .003 .000 .000 .003 .000 .000 .000 

-.WO -.053 -.028 -.019 -.024 -.051 -.059 -.054 -.059 -.057 -.052 -.018 .027 
-.120 -.071 -.027 -.024 -.028 -.043 -.047 -.063 -.067 -.054 -.054 -.003 .042 
-.200 -.094 -.022 -.022 -.031 -.048 -.042 -.065 -.067 -.053 -.054 .001 .062 
-.3&S -.070 -.023 -.030 -.031 -.048 -.046 -.060 -.062 -.056 -.043 .004 .033 
-.520 -.046 -.035 -.025 -.039 -.045 -.048 -.066 -.069 -.060 -.051 .004 .081 
-.680 -.062 -.034 -.024 -.030 -.042 -.037 -.069 -.062 -.063 -.047 -.003 .037 
-.840 -.eM5 -.029 -.032 -.034 -.039 -.047 -.057 -.059 -.059 -.034 -.012 .011 
-.920 -.058 -.038 -.021 -.028 -.038 -.048 -.051 -.069 -.063 -.018 -.010 -.0©4 

-1.000 -.ess -.050 -.036 -.063 -.037 -.079 -.047 -.055 -.021 -.049 -.043 -.035 

DIPPING .0100 .OOSB .0097 .0094 .0092 .0091 .0OSS .OOflS .0037 .0036 .ocas .0084 
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STUDY OF TOTAL AND VISCOUS RESISTANCE 
FOR THE WIGLEY PARABOLIC SHIP FORM 

Sangseon Ju 

Iowa Institute of Hydraulic Research 
The University of Iowa 
Iowa City, Iowa 52242 

INTRODUCTION 

The Froude method was based on the assumption that the total resistance 

of both ship and model can be split into two components, one the frictional 

resistance and the other the residual resistance, which is essentially the 

wave resistance and the resistance due to eddies and vorticity. 

It is now well known that the frictional-resistance coefficient C^ 

derived from a flat plate is not the same as that of the hull and, 

furthermore, that C^ is only a part of the viscous-resistance coefficient 

C . In order to improve the Froude method, it has been suggested that the 

ratio 

1 + k = C /C„ (1) V  f V / 

is independent of the Reynolds number Re and Froude number Fr, where k is 

the form factor and C^ may be represented by the Schoenherr flat-plate 

friction formula 

%|^= log^Q  (Re •   C^). (2) 

Except for interference effects, these two resistances obey the Reech- 

Froude law, 

C^(Fr,Re) = C^(Re) + C^(Fr) (3) 

where C*., a function of Re and Fr, is the total-resistance coefficient and 

^w the wave-resistance coefficient of the model. Applying the form-factor 

hypothesis, the total resistance of the model would then be given by 
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C^ = (1 + k) C^+ C^ (4) 

which is an important improvement over Froude's method. 

When k is known, Cy is obtained from the definition (1), and then C„ is 

given by (3). One way of determining k utilizes experimental data at very 

low Froude numbers, where C„ is negligibly small in comparison with Cy 

Unfortunately, the viscous resistance at low speeds is also small and the 

value of C^ gt ^hat speed may be inaccurate. Moreover, at low speeds, that 

is at low Reynolds numbers, the uncertain extent of laminar flow on the 

model may introduce another source of error. The form-factor procedure also 

involves the assumption that k is independent of Froude number, which is 

contradicted by many wake-survey measurements on models, even on models with 

a moderate block coefficient (0.6, for example) as can be seen in Tzou [1] 

and Tsai [2]. Nevertheless, in the present study, this form-factor 

procedure is one of the methods utilized, since it represents an important 

improvement over the Froude method. 

In order to determine the functions representing the variation of 

viscous and wave resistance with Froude number, it is necessary to measure, 

in addition to the total resistance, either the viscous or wave-pattern 

resistance. Both are necessary, however, since wave resistance and the 

viscous resistance do not obey the same laws of similarity and there exist 

causes of systematic errors such that the sum of C^^^ and C^p is less than 

C^, where C^^^ denotes the viscous-resistance coefficient derived from wake- 

survey measurements, and C,^p the wave-resistance coefficient derived from a 

wave-pattern analysis. 

In this study, the viscous resistances of the Wigley parabolic ship 

model were measured by the wake-survey method. Since no experimental data 

for the viscous resistance are available with this model restrained in both 

trim and sinkage, the differences between total and viscous resistances are 

compared with the wave resistance derived by wave-pattern analysis. 

A formula for calculating the viscous resistance of a ship model from 

measurements in the wake, derived in [3], is 
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K  --^   / [2g(H.-Hj - (u, -uj2]dS        (5) V    —  ' '- ^' 0 m'  ' e   m' 
9        ^ 

'"^ 

where   H^ is measured total head in the wake 

HQ is the undisturbed total head 

p is the mass density of water 

g is the acceleration of gravity 

0) is the area of the wake at the measurement section 

"nj   is the measured longitudinal component of velocity in the 

wake 

Ug   is the value of u^ at the edge of the wake 

u^    is the mean of the values of u^ e s 
UQ   is the velocity of the uniform stream 

Ry   is the viscous resistance. 

In order to apply this formula, it is necessary to measure H^ and u,^. 

EXPERIMENTAL EQUIPMENT AND PROCEDURE 

All experiments were performed in the IIHR towing tank which is 91.44-m 

long, 3.048-m wide and 3.14-m deep. The ship model employed in this study 

was a Wigley parabolic ship model with 0.444 block coefficient, a length of 

3.048 m and the wetted surface area of 1.381 m . For the selected form, the 

parametric values are B/L = 0.1000 and H/L = 0.0625. For turbulence 

stimulation along the hull, a row of studs of 3.2-mm diameter, 1.6-mm height 

and 9.5-mm spacing was fitted on the model 15.2 cm, 5 percent of the model 

length from the bow. With the towing arrangement used, the model was 

restrained in both trim and sinkage. 

The pitot rake and the traversing-probe mechanism were set on the 

trailer 3.05 m behind the stern of the ship model. 

The data acquisition system for the carriage speed, and the total head 

and pressure in the wake, consists of a 48-terminal scanivalve, a =fc0.021- 

kg/cm2 pressure transducer, a scanco CTLR2/S2 solenoid controller, IIHR 
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scanivalve positioning circuit, an Analog-to-Digital converter subsystem, 

and an HP-1000 E-series minicomputer, as shown in Figure 1, The carriage 

velocity and the pressure data are sampled simultaneously by this system. 

The computer is programmed so as to control the sequence of positions of the 

scanivalve and the duration of the stay at a particular opening in the 

course of a run. While at an opening, the computer program instructs the 

computer to delay sampling data until a transient has decayed, and then 

commands the A/D converter to take a desired number of samples in a given 

time. 

To be sure that the water was at rest, dye was emitted at the measuring 

depth. A waiting time of 15 minutes was used in this experiment. 

Reduction of sampling time is important in order to reduce the total 

number of runs. The voltage of the carriage speed is sampled easily because 

the signal does not change much. For the pressure measurement, two possible 

sequences were considered. The total pressure and the static pressure can 

be sampled alternately or separately. The separate sampling method was used 

in this experiment because the smaller transient time reduced the total 

number of runs. 

Transient times, determined from preliminary experiments, are 0.2 sec 

between successive total-head tubes outside the wake region, 0.6 sec between 

successive total-head tubes in the wake region, 1.2 sec between total-head 

tubes and static-head tubes, and 0.2 sec between successive static-head 

tubes. The sampling time of 0.5 sec was used at each tube and it was 

increased to 1.0 sec in the wake region which gives the most contribution to 

viscous resistance calculation. , 

The calculation of the viscous resistance was carried out in the manner 

indicated by Tzou [1], with some slight differences. Although the model 

velocity was not exactly constant through a run, it was assumed that the 

flow in the wake behind stern is steady, but the measured wake 

characteristics correspond to the instantaneous model velocity due to the 

rigid connection between the pitot rake and the carriage. For this reason, 

the total head and the flow velocity were corrected to the mean carriage 

speed of a run.  These corrected values were also corrected to the mean 
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carriage speed of a complete traverse of the wake section.  The total-head 

readings were corrected as 

c 

where V^ is the carriage speed corresponding to the measured value 

of H', and V^- is the mean value of V for the traverse over the measuring m     *- c 
section. The flow velocity in the wake was corrected as 

u = u' - (V - V ) (7) m   m  ^ c   c' ^  ' 

where u' is the uncorrected measured flow velocity. For this study, the 

total-head readings and the flow velocities were corrected at most 1.4 and 

2.8 percent of their values respectively. 

In order to know the variation of the viscous-resistance coefficient 

with Froude number, the obtained data were corrected to the standard 

temperature 18.3°C at which the total resistances were measured, under the 

Reech-Froude assumption that C^ is a function of Re. This temperature 

correction is essential since the kinematic viscosity v varies with 

temperature, approximately 2.5 percent per degree C for water, and the 

viscous resistances are obtained at the different water-temperatures. For 

this study, the temperature coorection was at most 1 percent of the values 

of the viscous resistance. 

DISCUSSION OF RESULTS 

Total and viscous-resistance coefficients d.re shown against Reynolds 

number and compared with the Schoenherr line of the flat plate in Figure 

2. The sinuous trend of the viscous-resistance coefficient with Reynolds 

number is seen to have much less amplitude than was found for the series-60 

model by Tzou [1] and Tsai [2]. This suggests that the form-factor 

procedure may give good agreement with experimental results. This is 

probably a consequence of the slenderness of the Wigley ship model. 
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The total-resistance coefficients have been compared in Figure 3 with 

other experimental results; those for a 4-m model tested at the Ship 

Research Institute of Japan (SRI), and 2.5-m model tested at the University 

of Tokyo (U.T,). Here C^ from SRI and U.T. were corrected to a standard 

temperature of 18.3°C, and the C^ of Iowa was fitted by a smooth curve by 

comparing the experimental results from the three tanks. Then the residuary 

resistance C^ from the three tanks were calculated by using the form-factor 

formula (4) with k = 0.100 for Iowa, k = 0.065 for SRI and k = 0.050 for 

U.T. These were selected so as to obtain the best agreement between the 

C^^'s of the three tanks. 

The viscous-resistance coefficients have been corrected to a standard 

temperature of 18.3°C, and then plotted against Froude number in Figure 4. 

The viscous-resistance coefficient shows a hump at Froude number of 0.24, 

and two hollows at Froude numbers of 0.22 and 0.32, in contrast with the 

monotonically decreasing trend assumed in the form-factor procedure. This 

suggests that the viscous resistance is affected by the wave resistance; 

thus its coefficient is a function of not only Reynolds number, but also 

Froude number, although this dependence seems to be small in this case. 

The wave-resistance coefficients obtained by subtracting the viscous 

resistance of the wake-survey measurements from the total resistance, C^- 

Cy^, are compared in Figure 5 and 6 with the residuary resistance C„. C^- 

Cy„ are seen to be in good agreement with C^^. The discrepancies between C^- 

Cy^ and C^^ of Iowa are less than 7 percent at Froude numbers greater than 

0.23. The largest discrepancy of 20 percent occurs in the range of 0.21 < 

Fr < 0.22 in which C^-C^^ has a hump. This is less than 3 percent of the 

total or viscous-resistance coefficients, that is about the same order as 

the experimental error. Generally speaking, C^-Cy^^ is greater than C^ at 

Froude numbers less than 0.23. C^-C^^ is also compared with the 

experimental results for C^^p from SRI and U.T., where C^^p was obtained by 

wave analysis of longitudinal-cut data. C^-Cy,^ and C^^p are in good 

agreement at Froude numbers in the range 0.24 < Fr < 0.34, with 

discrepancies of less than 12 percent of C^, or 3 percent of Ct or 0^7. 

which may be attributed partly to experimental error and partly to the 
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assumptions made in determining C^, C and C^p. The large discrepancy of 

35 percent occurs in the range 0.21 < Fr < 0.22. This is 5 percent of the 

total or viscous-resistance coefficients. At Froude numbers less than 0.27, 

the viscous resistance is more than 80 percent of the total resistance, and 

its effect dominates the flow characteristics. One would expect that, in 

this range, C^^-C^^ derived from wake-survey measurements would be more 

reliable than the C^p derived from wave-pattern analysis, since C^^p is 

derived from measurements of small quantities, and the influence of the wake 

on the waves behind the ship may be significant. At low Froude numbers or 

Reynolds numbers, the wake is wider and the boundary layer is thicker than 

at higher Froude numbers, thus the effect of wake and boundary layer 

becomes relatively more important. At Froude numbers greater than 0.34, the 

discrepancies between C^-C^^ and C^p become large again. C^^ is seen to be 

significantly smaller than C^-C^^ or C^, This is believed to be due to the 

assumption made in the wave-pattern analysis of the linearized free-surface 

boundary condition. 

The values of C^, C^^, C^-C^^ and C^, read from the curves in Figs. 3, 

4, 5 are tabulated against Froude number in Table 1. 
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Table 1.    Values of C^, C^, C^-C^^ and C^ with Froude Number. 

(Fixed Condition, Temperature ' 18.3°C) 

Fr Ct ^vw Cf^vw Cw Fr Ct Cyw Cf^vw Cw 

.100 

.105 
.00440 
.00438 : 

- -.00005 
-.00003 

.250 

.255 
.00457 
.00454 

.00380 

.00378 
.00077 
.00076 

.00079 

.00078 

.110 

.115 
.00436 
.00435 . 

- -.00001 
.00001 

.260 

.265 
.00452 
.00451 

.00376 

.00376 
.00076 
.00075 

.00077 

.00077 

.120 

.125 
.00434 
.00433 

- - .00004 
.00006 

.270 

.275 
.00451 
.00456 

.00376 

.00376 
.00075 
.00080 

.00078 

.00085 

.130 

.135 
.00432 
.00432 

- - .00008 
.00011 

.280 

.285 
.00464 
.00472 

.00376 

.00376 
.00088 
.00096 

.00094 

.00103 

.140 

.145 
.00431 
.00430 

- 
_ 

.00013 

.00014 
.290 
.295 

.00480 

.00488 
.00374 
.00372 

.00106 

.00116 
.00112 
.00121 

.150 

.155 
.00429 
.00426 

- - .00017 
.00016 

.300 

.305 
.00496 
.00504 

.00369 

.00366 
.00127 
.00138 

.00130 

.00139 

.160 

.165 
.00424 
.00422 

.00401 

.00399 
.00023 
.00023 

.00016 

.00016 
.310 
.315 

.00509 

.00511 
.00363 
.00360 

.00146 

.00151 
.00145 
.00148 

.170 

.175 
.00421 
.00422 

.00397 

.00395 
.00024 
.00027 

.00017 

.00020 
.320 
.325 

.00509 

.00505 
.00358 
.00358 

.00151 

.00147 
.00147 
.00144 

.180 

.185 
.00425 
.00428 

.00393 

.00391 
.00032 
.00037 

.00025 

.00030 
.330 
.335 

.00503 

.00501 
.00359 
.00361 

.00144 

.00140 
.00143 
.00142 

.190 

.195 
.00428 
.00427 

.00389 

.00386 
.00039 
.00041 

.00032 

.00033 
.340 
.345 

.00500 

.00500 
.00362 .00138 .00141 

.00143 

.200 

.205 
.00429 
.00432 

.00384 

.00381 
.00045 
.00051 

.00036 

.00041 
.350 
.355 

.00500 

.00500 
- - .00144 

.00144 

.210 

.215 
.00436 
.00436 

.00378 

.00376 
.00058 
.00060 

.00047 

.00048 
.360 
.365 

.00500 

.00501 
- - .00145 

.00147 

.220 

.225 
.00432 
.00432 

.00375 

.00376 
.00057 
.00056 

.00046 

.00047 
.370 
.375 

.00505 

.00512 - - 
.00152 
.00160 

.230 

.235 
.00435 
.00442 

.00379 

.00382 
.00056 
.00060 

.00052 

.00060 
.380 
.385 

.00520 

.00530 
- 

- 
,00169 
.00179 

.240 

.245 
.00450 
.00455 

.00383 

.00382 
.00067 
.00073 

.00070 

.00076 
.390 
.395 

.00540 

.00550 
- - .00190 

.00201 

.400 .00560 - - .00212 
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A GEOMETRICALLY CONSISTENT LINEARIZATION METHOD 

FOR AN ELLIPTIC STRUT 
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ABSTRACT 

The study of irrotational, incompressible flows about thin geometries can be 

carried out using the well known perturbation procedures. In two dimensional 

flows exact solutions based on mappings can be used to compare the accuracy of 

first order solutions. For most airfoil sections a first order perturbation 

solution is not sufficiently accurate in representing the pressure and velocity 

distribution, especially about the leading edge. For three-dimensional flows 

exact solutions are rare and for more complex problems such as ship wave 

resistance formulations an exact solution does not exist for comparison of 

results. In this last case second order solutions exist but are \/ery difficult to 

calculate. Therefore, it would appear advantageous to improve first-order 

calculations. To this end a perturbation method that incorporates the geometric 

properties of the disturber is studied. This method is first applied to a 

symmetric Joukowski airfoil to an ellipse and an elliptic strut. This method, 

here called the "geometrically-consistent linearization method" predicts the 

leading edge pressure variations correctly for the two foils studied and appears 

to be superior to the classical first order solutions. An iterative solution 

following this procedure further improves the calculation. The method discussed 

and the following iteration procedure seem to form an efficient numerical 

solution to airfoil flow problems. The method is then applied to an elliptic 

strut wave resistance calculation. 
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INTRODUCTION ' 

Perturbation methods provide powerful solution techniques for most engin- 

eering problems and for problems of fluid mechanics in particular. In the 

solution of problems by a perturbation method the boundary conditions and the 

general differential equation are expanded in series in increasing power of the 

perturbation parameter. The differential equation and the boundary conditions 

corresponding to the same power of the perturbation parameter are then solved to 

obtain the terms of the series representing the solution. This classical method 

is independent of the types of boundary conditions. The formulation presented 

here is based on the idea that "first order solutions, that is linearized 

solutions, may have the right form but not quite the right place" Van Dyke, [1]. 

The sample foils studied are classical problems and have exact close form 

solutions. They are reworked mainly to assess the value of the linearization 

method under study. The examples are symmetric about the axis corresponding to 

the major flow direction. 

THEORY 

A symmetric, thin, two dimensional disturbance in a uniform flow is 

shown in Figure 1. The Cartesian coordinates are chosen such that the x 

direction is aligned with the incoming flow. The function 

y = ±eTi(x) ' (1) 

represents the impermeable boundary. , 

(a) Formal Classical Linearization 

The linear potential flow solution about the above shape can be formulated 

in the following way. We assume that a potential solution of the form 

$ = Ux + e(t)(x,y) + 0(e2) 

exists where : 

v2$ = 0 . '      . 1 
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The  inipermeable boundary condition to the first order in  E can be written as: 

-> -> 
vn  =  (U  + e*^(x,y),   z^^){cr]^,  -1)  = 0 

=    UTI    -  ({)    =  0 (3) 
X        y ^   ' 

on the impermeable surface. The region of definition for <^ is then extended to 

include the domain defined by the disturber. The potential function (^ and its 

derivatives are then expressed by Taylor's series as follows: 

$^(x,Ti) = e({)^(x,o) + 0(e2) . (4) 

This simplifies the boundary condition (3) to the more manageable form 

Un^ (x) - (t)^ = 0 at y = 0 . (5) 

Various analytical or numerical methods and corrections are possible for the 

solution of (2) and (4) Van Dyke [1] and Lighthill [2]. The implied geometric 

criterion in equation (1) is that as the e parameter is changed, the resulting 

geometry of the disturber is seen to change in the direction perpendicular to 

the incoming flow direction. This assumption is studied in some detail in the 

following paragraph. 

(b) Geometrically Consistent Linearization (G.C.L.) 

This linearization begins with assumptions identical to the classical 

solution, namely equations (1) and (2). We then study the meaning of the 

parameter e. The perturbation theory requires that the disturbance and the 

disturber be treated together in a perturbation problem. Up to now this was 

interpreted to be the existence a parameter e which describes a property of the 

disturber which is such that when e->-0, the "disturbing character" of the 

disturber vanishes Wehausen [3], The parameter z is usually defined in terms of 

the magnitude of the disturber in the direction perpendicular to the uniform 

flow, as, for example, the maximum thickness divided by the chord length. Here 

we study directional effects, which can be important around the leading edge of 

an air foil and we show a "directional inconsistency" in the "thin airfoil" and 

by extension in "thin ship" theories. 
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Let us assume that the disturbance parameter e in equations (1) and (2) is 

changed by an amount de. Here we treat e as a small quantity and de as an 

infinitesimal quantity. The new equation for the impermeable body from (1) will 

be 

y = (e + de)Ti(x) , (6) 

while the corresponding potential will be: 1 

t 

$ = Ux + (e + de)   (t)(x,y) or 

or .1 

$ = Ux + e<t)(x,y) + de<t)(x,y) . (7) 
I 

Equation (7) indicates that at any point b shown in Figure 1 there will be a 

change in the value of the potential function $ by an amount d(})(x,y). We now 

express the function d^ about point b on the disturbance using the normal and 

the tangential coordinates (n.x) as shown in Figure 1. We obtain 

d$ = H dn +11 dx + de* (x.y) . ! (8) 

i 

For any point on the impermeable boundary — = 0, if we select dt = 0 

implying that we remain in a direction normal to a boundary, we obtain: 

I 

d$ = de(t)(x,y) . ' (9) 

Equations (7 and 9) can be interpreted as follows: a change in $ 

given by dE(J>(x,y) has a directional quality. That is, this change is in the 

direction normal to the boundary. In fact all points in the direction normal to 

the boundary and on the boundary show a change de(t)(x,y) or d$. A directional 

inconsistency can therefore be seen in the classical theory, as (5) implies a 

variation in the disturbance in the y direction, while the corresponding change 

in potential given by (9) and implied by (7) is in the direction normal to 

y = ■n(x). As the perturbation theory requires that the disturbance and the 

disturber be treated together, our interpretation here is that the directional 

relationship shown above must be included in the formulation. We therefore add 
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the requirement that disturber and disturbance must change along the same 

direction. The validity of equations (1) and (2) with the directional compat- 

ibility will then be interpreted as follows. As the perturbance parameter e 

changes the disturber maps into a new shape. During this mapping each point on 

the impermeable boundary moves along a path normal to the boundary. Equation 

(1) is therefore a rather simple description of the disturber and one must add 

that as e>0, the projection of the points on the disturber must be along the 

direction normal to the surface defining the disturber. The classical ortho- 

gonal projection along the y direction might therefore not be adequate. Whereas 

in one-dimensional perturbation problems such a directional requirement does not 

exist, in multi-directional problems it might be of certain importance. One 

possible result of this linearization technique is that the projection required 

by this method might give a region smaller, and different from the orthogonal 

projection. 

APPLICATION FOR AN ELLIPTIC STRUT 

The requirement that the geometry of the disturbance must change in the 

direction normal to the boundary as the disturbance parameter e is changed by an 

amount de can be studied in various ways. The procedure used in this study is to 

approximate the mapping of a point on the boundary by a suitable polynomial. The 

general numerical procedure can be summarized as follows. Any point b in 

Figure 1 is assumed to map at point b'. The curve bb' is represented by a 

parabola normal to the boundary at b. This procedure maps the disturber on a 

segment on the x axis with a length less than the chord length. The leading edge 

is mapped at an interior point. The corresponding shift of singularities is 

equal to half of the local radius of curvature as given by Lighthill based on a 

different criterion. The resulting linearized problem 

V$ = 0 

U T1^ = 0 
b' 

(10a) 

(10b) 
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is solved by the method of singularities. The application of G.C.L. to a 

symmetric elliptical foil and a Joukouski Airfoil were reported earlier in 

Calisal [4].  Here an application for a elliptic strut is defined as: 

. ±^(1 -4x2)1/2 for "2 cxc -p is presented, 

The mapping of the points on the wetted surface to points on the centre- 

line of symmetry is accomplished as explained above. As the waterline slope 

remains constant at constant x values, the mapped region is divided in vertical 

strips. A source distribution based on thin ship theory is assumed to represent 

the model. 101 sources are used for this representation. The sources are 

located at the mid point of strips and at a vertical location 

fd ,  X -koz , ■ 1 
1    JQ a(x,z) e   dz 

ko    fd /  \ j I 
JQ CT(X,Z) dz 

where d is the draft of the strut. The wave resistance is then calculated by 

the method described in Calisal [5] which uses a numerical far field wave survey 

data. 

RESULTS AND DISCUSSION 

C 

Results obtained for the wave resistance is presented in a graphical 

form in Figure 2 and Figure 3. The resistance values given by G.C.L. are 

observed to be lower than the values predicted by Michell, Hegner methods, but 

higher in general than the zeroth order slender ship approximation method as 

reported by Nobless [1983]. The amplitude of oscillations in the resistance 

curve as given by G.C.L. method are seen to be less than the oscillations in the 

classical Michell curve, but the order of magnitude remains still high. 

Additional corrections or procedures seem to be necessary to include free 

surface boundary condition properly in the formulation. We are currently 

calculating the error in the ship boundary calculations, we will then proceed 

into the calculation of error in the free surface boundary condition at the 

calculated free surface. 
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TABLE I 

Wave Resistance Coefficient r as Defined by Nobless (1983) 
^ for the Elliptic Strut 

Froude 
number fr 

0. 147400E+00 
0.149100E+00 
0.150800E+00 
0.152500E+00 
0. 154300E+00 
0. 156200E+00 
0. 158100E+00 
O. 160100E+O0 
0. 1G2200E+00 
O. 166700E+00 
0. 1G9000E+00 
0.171500E+00 
0.174100E+00 
O. 176800E+00 
0.179GOOE+00 
0. 182600E+00 
0.185700E+00 
0. 189000E+00 
O.192500E+00 
O. 196100E+00 
0.2OOOOOE+O0 
0.204100E+00 
0.208500E+00 
0.213200E+00 
0.218200E+00 
0.223600E+00 
0.229400E+00 
0.235700E+00 
0.242500E+00 
0.250000E+00 
0.25820OE+O0 
0.2673OOE+O0 
0.277400E+00 
0.28B700E+CX) 
0.30150OE+O0 
0.316200E+00 
0.333300E+00 
0.345000E+00 
O.3536OOE+O0 
0.36500OE+OO 
0.3780O0E+0O 
0.395000E+00 
0.408200E+00 
0.425000E+00 
0.447200E+00 
O.4520O0E+00 
0.465000E+CX) 
O.4820O0E+00 
0.50OOOOE+O0 
0.577400E+00 
0.707100E+00 

r*100/fr 

0.ie9203E+01 
0.158557E+01 
0.176772E+01 
0.219e37E+01 
0.242609E+01 
0.226656E+01 
O.189138E+01 
O.163529E+01 
O.172480E+01 
0.235049E+01 
0.244843E+01 
0.210253E+01 
O.15B858E+01 
O.135956E+01 
0.163402E+01 
0.225168E+01 
0.240478E+01 
0.200902E+01 
0.156770E+01 
O.129467E+01 
O.143686E+01 
O.182522E+01 
0.206899E+01 
0.193519E+01 
0.150495E+01 
0.114434E+01 
0.111886E+01 
0.137615E+01 
0.163844E+01 
0.159521E+01 
0.127107E+01 
0.903490E+00 
0.7G0326E+00 
0.872974E+00 
O.104371E+01 
0.105128E+01 
0.836377E+00 
0.661211E+00 
0.55G739E+00 
0.4494G9E+00 
0.3G7151E+00 
0.320G41E+00 
0.323401E+00 
0.346680E+0O 
0.363874E+CX3 
0.365413E+00 
0.359688E+00 
0.344646E+00 
0.318482E+00 
0.231584E+00 
0.104317E+CX) 

1/(fr*fr) 

0.460036E+02 
0.450002E+02 
0.440004E+02 
0.429982E+02 
0.420026E+02 
0.410020E+02 
0.399988E+02 
0.390016E+02 
0.380O01E+02 
O.360017E+02 
0.349990E+02 
0.339979E+02 
0.330014E+02 
O.319983E+02 
0.310015E+02 
0.300012E+02 
0.290018E+02 
0.279996E+02 
0.269995E+02 
0.259989E+02 
0.249999E+02 
0.239986E+02 
0.230011E+02 
0.220000E+02 
0.210003E+02 
O.2O0OO1E+02 
0.189992E+02 
0.180009E+02 
0.170003E+02 
0.160007E+02 
0.149994E+02 
0.139999E+02 
0.129995E+02 
0.12O0O3E+02 
0.110001E+02 
0.999969E+01 
0.899975E+01 
0.840203E+01 
0.e00014E+01 
0.750595E+01 
0.G99991E+01 
0.640890E+01 
0.6O0001E+01 
0.553591E+01 
0.5OOOO3E+O1 
0.489487E+01 
0.462498E+01 
0.430394E+01 
0.399999E+01 
0.299994E+01 
O.199996E+01 
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TABLE II 

Wave Resistance Coefficient r as Defined by 
Nobless (1983) for the Elliptic Strut 

Froude 
number fr 

0. 147400E+00 
O.149100E+00 
0. 150800E+00 
0.152500E+00 
O. 154300E+00 
0. 156200E+00 
O. 158100E+00 
0.160100E+00 
O.162200E+(X) 
O.166700E+00 
O.169000E+00 
0.171500E+00 
0.174100E+00 
O.176800E+00 
0.179600E+00 
0.182600E+00 
O.185700E+00 
0.189000E+00 
0.192500E+00 
O.196100E+00 
0.2000CX)E+00 
0.204100E+00 
0.2O85O0E+OO 
0.213200E+00 
0.218200E+00 
O.2236O0E+OO 
0.22940OE+0O 
0.235700E+00 
0.242500E+00 
0.250OO0E+00 
0.258200E+00 
0.267300E+00 
0.277400E+00 
0.288700E+00 
0.3015OOE+OO 
0.3ie200E+00 
0.333300E+CX) 
0.3450O0E+00 
0.353600E+00 
0.365000E+00 
0.378000E+00 
0.395000E+00 
O.4082OOE+0O 
0.425000E+00 
0.447200E+bO 
0.452000E+00 
0.465OOOE+0O 
0.482000E+00 
0.500000E+00 
0.577400E+00 
0.707100E+00 

r*100/fr 

0. 193308E+01 
O. 161143E+01 
0.177702E+01 
0.226687E+01 
0.257G73E+01 
0.238371E+01 
0.193704E+01 
0.158281E+01 
0.162232E+01 
0.24220eE+01 
0.24e066E+01 
0.207913E+01 
O.160146E+01 
O.144292E+01 
0.173739E+01 
0.219860E+01 
0.235871E+01 
0.205065E+01 
O.156572E+01 
0.129776E+01 
O.14e337E+01 
O.ie7614E+01 
0.212214E+01 
O.195480E+01 
O.149997E+01 
O.113714E+01 
O.113804E+01 
0.143132E+01 
0.168481E+01 
0.162162E+01 
0.126778E+01 
0.895294E+00 
0.772620E+00 
0.900219E+00 
0.10G834E+01 
0.106877E+01 
0.838333E+00 
0.GG4020E+00 
0.559935E+00 
O.453870E+0O 
0.371703E+00 
0.324G32E+00 
0.326426E+00 
0.355234E+00 
0.383898E+00 
0.401857E+00 
0.392260E+00 
0.386090E+00 
0.380765E+00 
0.350545E+00 
0.2O1808E+0O 

1/(fr*fr) 

0.4G003GE+02 
0.450002E+02 
0.440004E+02 
0.429982E+02 
0.420026E+02 
0.410020E+02 
0.399988E+02 
0.39001GE+02 
0.380O01E+02 
0.3G0017E+02 
0.349990E+02 
0.339979E+02 
0.330014E+02 
0.319983E+02 
0.31OO15E+02 
0.300012E+02 
0.290018E+02 
0.279&96E+02 
0.269995E+02 
0.259989E+02 
0.249999E+02 
0.23998GE+02 
0.230011E+02 
0.220000E+02 
0.2 10003E+02 
0.20OOO1E+02 
0.189992E+02 
0.180009E+02 
0.170003E+02 
O.160007E+02 
0.149994E+02 
0.139999E+02 
O.129995E+02 
0.120003E+02 
O.110001E+02 
0.999969E+01 
0.899975E+01 
0.840203E+01 
0.80O014E+01 
0.750595E+01 
0.699991E+01 
0.G40890E+01 
0.600001E+01 
0.553591E+01 
0.50OO03E+O1 
0.489487E+01 
0.462498E+01 
0.430394E+01 
0.399999E+01 
0.299994E+01 
0.19999GE+01 

Wave slop method 
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A SEMI-EMPIRICAL METHOD FOR WAVE RESISTANCE PREDICTION 

by 

A. Yucel Odabasi 

The British Ship Research Association, 

Wallsend, Tyne and Wear, NE28 6UY.  England. 

1 INTRODUCTION 

While the studies on theoretical wave resistance have been continuing with the 

aim of producing more reliable formulations and efficient solution techniques, it 

appears that the current state of the art does not provide a sufficiently accurate 

and flexible method for design office use.  To satisfy this need for the British 

Shipbuilding Industry a study has been undertaken by BSRA to produce a semi- 

empirical method.  The basis of the method has been taken from thin ship theory[l ]. 

Certain modification has been made to overcome some inherent inaccuracies within the 

formulation.  The resulting formulae have been further modified through a regression 

analysis based on a data base established from BSRA methodical series test 

results[2] and some Japanese and German data.  Recently, a more homogeneous data 

base has been set up as a part of the (NSMB) Co-operative Research Activity which 

also led to some additional modifications in the formulations.  This note describes 

the original BSRA method development since the latter is still in the process of 

being validated. 

2 THE METHOD DEVELOPMENT 

In a co-ordinate system shown in Fig.l the wave resistance of a ship, according 

to the thin ship theory, may be expressed as: 

Tx/2 
R = 2g^p / (uV^)  /  (P^ + Q^) sec^e d9 
w /-, 

-71/2 
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where P and Q are, respectively, the cosine and sine components of the generated 

wave system, given by: 

P      L/2  0 ^ 2  cos 
} =  J    / -r^ exp (kzsec 0)    (kxsec9) dz dx, 

Q    -L/2  -T '^'^ sin 

/ 2 
and k=g/V  is the wave number, g is the gravitational acceleration, p is the density 

of water, V is the forward speed, L is the length, T is the draft of the ship, and 

y=y(x,z) is the equation of ship surface. 

When this expression is utilised in its original form it produces unrealistic 

waviness in low and medium speed ranges, and even if one attempts to smooth the 

results over a given speed range the magnitudes and slopes are not necessarily 

correct.  In the past several attempts have been made to utilise thin ship theory to 

derive empirical or semi-empirical predictor formulae, cf.[3-5]. Within the 

approach adopted at BSRA the following basic assumptions have been employed: 

1 Oscillatory nature of the wave resistance prediction stems from both the 
2 

bow-stern wave interaction and the contribution of exp(kzsec 9) term. 

2 Tail ends of the wave spectra are generally inaccurate and sometimes 

misleading. 

3 It is more preferable to apply a co-ordinate straining along x-direction. 

As a result the wave making of fore-body and aft-end, in the low and medium speed 

range, were calculated separately and integration in P and Q were carried out 

through a special scheme which acts like a low-pass filter, i.e.  deliberate 

introduction of numerical diffusion. 

Computations carried out with these provisions indicated that the predicted 

wave resistance curves were smooth, provided that 9 integration was carried out 

through a weighted summation. 

The next task to be achieved was the correction of magnitude and gradients, 

which required the performance of a regression analysis.  The data base was formed 

from the model test results of BSRA Methodical Series and published Japanese and 

West German data.  Since the wave pattern data was practically non-existent, the 
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model wave resistance was derived through a form factor method from total resistance 

curves.  Results obtained in this way were quite satisfactory for high and medium 

speed forms.  In the low speed range the scatter was quite considerable and trend 

analyses indicated that this was partly due to the presence of wave breaking in some 

model tests.  The data collected in that way was parted into two groups; commercial 

form range (covering low and medium speed data) and high speed form range.  In each 

group a data screening exercise was undertaken to reduce bias as much as possible. 

Regression was performed on a log-log basis to obtain formulae.  Trends showed that 

the computed wave resistance contributed in an exponential form in the commercial 

speed range.  Figure 2 shows the predicted versus measured results for the 

commercial speed range data base. 

3   APPLICATION OF THE METHOD 

During the last four years this semi-empirical method has been used for both 

prediction and form improvement purposes. Within the context of this workshop three 

hulls were selected; Wigley form, Series-60 (C^=0.60) hull and HSVA tanker form, 

representing all three speed ranges.  Results are represented in Figs.3 to 5 and 

Table 1.  In these figures the range of the measured data are also illustrated. 

An inspection of the results indicate that for the Wigley form humps and 

hollows of the measured data are not well predicted although the computed results 

indicate flatnesses in these regions.  This is partly due to the original intention 

in the derivation of the semi-empirical method which aimed at eliminating them.  The 

result however is generally satisfactory. 

For the Series-60 hull performance of the method is quite satisfactory and 

within the limits of measured data. 

For the HSVA tanker form the trend is predicted correctly but the estimated 

magnitude is higher than measured values.  This difference may be attributable to 

the presence of wave breaking resistance in some of the data employed in the 

regression analysis.  Since, however, the wave making component of resistance for 

this type of hull, at the Froude numbers considered, is only a small fraction of the 

total resistance observed differences do not have any practical significance 

provided that the trend is predicted correctly. 
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CONCLUDING REMARKS .      •      I 

While the results presented here belong to a semi-empirical method, it was the 

intention that the use of theory would ensure: 

1 Prediction of accurate results for the right reasons. 

2 Provision of a more Intimate relationship between the detailed hull 

geometry and the resistance characteristics.     | 

I 

Within the limitations, imposed by the data base, these objectives have 

generally been achieved.  Current work on the extension of this technique, as a part 

of (NSMB) Co-operative Research activity, by the use of somewhat different 

methodology and more homogeneous data base is expected to improve the method 

performance. 

i 
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Table 1  Computed Results 

Wigley Hull Series-60 Cg = 0.60 HSVA Tanker 

Froude No. Resistance 
Coeff. xlO-' 

Froude No. Resistance Froude No. Resistance 
Coeff. xlO^ Coeff. xlO-^ 

0.23 0.5794 0.1417 0.1006 0.0975 0.0491 
0.26 0.9899 0.1575 0.1286 0.1084 0.0793 
0.2801 1.6166 0.1732 0.1645 0.1192 0.0858 
0.3112 2.0679 0.1889 0.2099 0.1301 0.0974 
0.3423 2.4005 0.2047 0.2666 0.1409 0.1612 
0.3734 2.9714 0.2204 0.3321 0.1517 0.3041 
0.4046 3.5757 0.2362 0.4143 0.1626 0.5743 
0.4357 4.1241 0.2519 0.5354 0.1734 1.0404 
0.4668 4.5921 0.2677 0.7205 0.1842 1.7618 
0.4979 4.9609 0.2834 0.9975 0.1951 2.7530 
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INTRODUCTION 

Computations have been performed fox six given hull forms 

specified by Reference [1].  In the wave resistance computations both 

the "tent" function method [2] and the thin-ship-panel raethod based on 

the thin-ship theory, and the Guilloton's method [3] have been employed 

for the Wigley hull and the Series 60 Block 60.  The thin-ship theory 

has also been applied to the wave re"istance computations for the 

struct-like hull form and the vertical cylinders.  The wave resistance 

of the fully-submerged body was computed by the line-source- 

distribution methoq. 

The wave pi.oflle computations were carried out only for the Wigley 

hull and the Series 60 Block 60.  The thin-ship-panel method and the 

Guilloton's method were used in the above cases. 

All above calculations were performed for the condition when 

neither sinkage nor trim is permitted. 

. 
COMPUTATIONAL ^tETHODS i 

The "tent" fuaction method has been described in details in a 

paper by Hsiung [2].  The Guilloton's method was basically followed the 

Gadd's interpretation [3].  To determine the source distribution in the 

Guilloton transformation, the source distribution on the centerplane 

obtained by the thin-ship theory was taken as the initial value.  In 

our work, the iterative process was carried out until the value of the 

source strength in equation (3) of Reference [3] converging for a 

corresponding value of flow velocity in the longitudinal direction, 

rather than checking the convergence of the value of wave resistance. 
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The thin-ship-panel method is the by-product of the Guilloton's 

method.  It is because one has to find the source distribution on the 

centerplane, and then carry out the Guilloton transformation.  The 

centerplane of a ship is divided into 200 panels.  It is assumed that 

the source strength is uniform over the panel, and.that by the thin- 

ship theory the source strength is the local longitudinal slope of hull 

form at the centroid of the panel.  Numerical integrations was 

conducted on the Havelock source function [4] to give the wave profile 

and wave resistance for a Froude number. 

The wave resistance of the strut-like hull form and the vertical 

cylinders was computed oy the thin-ship theory.  In the case of the 

vertical cylinders, the draft was set to infinity.  The resistance of 

the submerged spheroid was computed by the slender-body theory.  The 

submerged body was represented by a source line along which the sources 

were distributed in steps [5]. 

COMPUTED RESULTS 

Computed results for six hull forms are sho\m in Figs. 1 to 12. 

The corresponding numerical values are recorded in Tables 1.1 to 12. 

The results computed by the "tent" function method and the thin- 

ship-panel ra-'ithod are almost identical as expected, since they are all 

based on the thin-ship theory.  The Guilloton's method shows the 

improvement by reducing the unwanted peak near Froude number 0.3.  The 

method of computation for the strut-like hull form and vertical 

cylinders was checked with the results calculated by Havelock [6].  But 

the corapiited results for the submerged spheroid are somewhat lower than 

Farell's data [7]. 
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CW OF UIGLEY HULL BY IHIN SHIP THEORY 

0,1500000 
0,1600000 
0,1700000 
0,1800000 
0,1900000 
0,2000000 
0,2100000 
0,2200000 
0.2300000 
0,2'500000 
0.2500000 
0,2600000 
0,2700000 
0,2800000 
0,2900000 
0,3000000 
0,3100000 
0,3200000 
0,3300000 
0,3^500000 
0,3500000 
0,3600000 
0,3700000 
0,3800000 
0,3900000 
0,4000000 
0,4100000 
0,4200000 
0,4300000 
0,4400000 
0,-1500000 
0,4600000 
0,4 700000 
0,4800000 
0,4900000 
0,5000000 

3.6317663E-04 
3,54155B7E-04 
3,996B794E-04 
7,1220699E-04 
4.7491590E-04 
8,9110731E-04 
S,2S53116E-04 
6,56bS533E~04 
l,1607442E-03 
l,379065SE-03 
1.062S403E-03 
8,4262i:'.SE-04 
l,0993i02E-03 
l,5959S31£-03 
2,0204654E-03 
2,1317.X13E~03 
1.989390'L-OS 
l,7003966E-03 

1.4206440E-03 
l,26<52867E-03 
i.2365050E-03 
l,3740723E-03 
1,6405915E-03 
1,967312f.E-03 
2.339563BE~03 
2,7323661E-03 
3,1022218E-03 
3,427;>311E-03 
3,709414 7E-03 
3,9501S65E-03 
4,145B397E-03 
4,2924:^J0SE-03 

4.39225SSE-03 
4,'!531V0i£-03 
4,4S4 4835t-03 
4,4929693E-03 

TABLE 1,1 
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CU OF UIGLEY HULL BY TtNT FUNCTION 

FN 
0.1500000 
0.1600000 
0.1700000 
O.ISOOOOO 
0.1900000 
0.2000000 
0.2100000 
0.2200000 
0.2300000 
0.2400000 
0.2500000 
0.2600000 
O.270000C 
0.2BOOOOO 
0.2900000 
0.3000000 
0.3100000 
0.3200000 
0.3300000 
0.3400000 
0.3500000 
0.3600000 
0.3700000 
0.3800000 
0.3900000 
0.4000000 
0.4100000 
0.4200000 
0.4300000 
0.4'100000 
0.4500000 
0. ■1600000 
0.4700000 
0.4S0000C 
0.490000C 
0.5000000 

CU 

3.82109S7E-04 
3.5766376E-04 
4.3053465E~04 
7.105B157E-04 
4.777^.-i963E-04 
8.'!9279;:.2E-04 
7.9999410E-04 
6.25iy696E-04 
1.0966i32E-03 
1.3033022E-03 
1.0019J89E-03 
B.01')6035E-04 
1.037Dy07E-03 
1.5195/16E-03 
1.90847£eE-03 
2.02'.;r:;777E-03 
1.S305613E-03 
1.6097935E-03 
i.34B7736E-03 
1.1929745E-03 
1.1834357E-03 
1.3177120E-03 
1.567'10?lE-03 
1.S93969SE-03 
2.2591520E-03 
2.6307642E-03 
2.9S475 63E-03 
3.3049730r:-03 
3,5S2'V;)07E-03 
3.8i;<.20Vie-03 
3.9973864E-03 
'5.137-1701E-03 
4.2374516E-03 
4.30206HIE-03 
4.3362156E-03 
4.34<16971E-03 

TABLE 1,2 



CU OF WIGLEY HULL BY  HUILLOTOM'S HE'THOn 

FN m 
0»26D0000 9.5476204E-04 
0,3120000 US3S1256E-03 
0.34BOOOO 1,4069£16E-03 
0 ► 4020000 2 ► 3733070!:-03 
0,4520000 3.546S070E-03 
0,4320000 3,8627&97E-03 

TABLE 1.3 
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WIGLEY HULL - WAVE PROFILE FOR Fli=0,2c,6 

X/L 

-CuVSOOOOO 
-0,8500000 
-0>7SOOOOO 
-0,6500000 
-0,5500000 
-0.4500000 
-0,3500000 
-0,2500000 
-0,1500000 
-5,0OOO0I2E--O2 
5,00000t2t:-02 
0,1500000 
0,2500000 
0,3500000 
0,4500000 
0,5500000 
0,6500000 
0,7500000 
0,3500000 
0,9500000 

ETAl 
(THIN SHIP) 
0.:<0S.t215 
0,2499376 
6,:<520253E-02 

-0.1033109 
-0,2001536 
-0,2153220 
-0,1A;5S652 

-7,89090S9E-02 
-2,4032257K:-03 

3,3795A40E-02 

1,32U.740£-02 

-3,6950212E-02 

-0,1031319 
-0.1491 SOS 
-0,1547591 
-0,1139195 
-5,S7S84631-:-02 

-2,lc.20700E-04 
3,A240775H:-02 

5,3B3eO3SE-02 

E rA2 
<6UILL0T0N) 
0,2365334 
0,2392697 
5,7663930E-02 
-0,1147224 
-0,1951490 
-0,1774247 
-0,1103241 
-4,4262219E-02 
-7,S9604S9£-03 
-i,1157164E-02 
-4,6S947'?4E-02 
-9.0624034E-02 
-0,1157554 
-0.1134106 
-9,028S229E-02 
-6,0S43i73E-02 
"3,6059152E-02 
-i,9772587E-02 
-7,5415252E-G3 
l,004504SE-02 

TABLt 
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UIGLEY HULL -  UAUE  PROFILE  FOR  fii^O/SAB 

X/L El'Al ETA2 
(THIN SH.TP)    (GUILLOTON) 

-0^9SOOOOO     0»20;;.47S6     0,200278B 
-0.8500000     0.2231954     0.22103S4 
-0.7500000     0.14A3,i46     0.1457227 
-0.6500000     5.392606S'E-02 4.5555356E-02 
-0.5500000 "2.92474UE-02 -5.0352S7AE-02 
-0.4500000 -9.5797226E-02 -0.1216435 
-0.3500000 -0.14:^5977    -0.15SS560 
-0.2500000 -0.171895S    -0.1662S33 
-0.1500000 -0.1S09965    -0.1540S01 
-5.0000012E-02 -0,1726263    -0.1321347 
5.0000012E-C2 -0.1300055    -0.1051524 
0.1500000 -0.1178961    -7.7i06707£-02 
0.2500000 -8.1765220E-02 -5.2341312E-02 
0.3500000 -4.7128390E-02 -3.4759536E-02 
0.4500000 -1.8844496E-02 -2 .59692S7E-02 
0.5500000 -3.3S67732E-04 -2,42S3199E-02 
0.6500000 6.e67:-;i21E-03 -2.72243S6.E-02 
0.7500000     3.600102SE-03 -3.2151163E-02 
0.8500000 -6.S1730y7E-03 -3.4747437E-02 
0.9500000 -1.2836941E-02 -2.994S501E-02 

TABLE 3 

83 



§ 
o 

Q 
CM 

X 

< 

03 

THIN  SHIP   THEORY 

I 

■ 

N \ 

N 
   

?v^ 

N. ̂
 ^ 

-X—< _5^-»        ^.' ->f—-X' 

1  

  

-1 .02 -2.60 -2.20 2.20 2.62 1 .20 

X/L 

B5 

CM 

o 

X 
< 

CM 

CSS 
I 

GUILLOTON^S METHOD 

\ 

\ 

\ 

^ K ..^ 

■^ —\^- ,   \r \^              VJ* 
.-x^ 

r^^—H- 

-1 .22 -2.62 -2.20 2.22 2.62 1 .22 

X/L 

Fig 4    WIGLEY HULL-WAVE PROFILE FOR FN=0.452. 

84 



UIGLEY HULL - UAUE PROFILE FOR FN=0.452 

X/L 

-o.ysooooo 
-O.B500000 
-0^7500000 
-O^dSOOOOO 
-0^5500000 
-0.4500000 
-O.JiOOOOO 
-0.2500000 
-0.1500000 
-5.0000012E-02 
5.0000012E-02 
0.1500000 
0.2500000 
0.3500000 
0.1500000 
0.5500000 
0.6500000 
0.7500000 
0.8500000 
0.9500000 

ElAl 
(THIN BHIP) 
0.1,550566 
0.17103:57 
0.1409574 
9.2776529E-02 
4.27:iH030E-02 

-2.39H2115E-04 
-3.7V56130E-02 
-6.9640309E-02 
-9.5355B32E-02 
-0.1169232 
-0.1330644 
-0.1443057 
-0.1507191 
-0.1523647 
-0.1495273 
-0.1424499 
-0.131504S 
-0.1170637 
-9.S99S472E-02 
-7.4016362E-02 

ETA2 
(GUILLOTON) 
0.1337907 
0.1718368 
0.1143545 
9.4S14062E-02 
3.9319646E-02 

-1.3S65666E-02 
-5.8809664E-02 
-9.270510SE-02 
-0.115649B 
-0.1293343 
-0.1361634 
-0.13S8636 
-0.1391374 
-0.1372155 
-0.1331300 
-0.1263099 
-0.1164574 
-0.1021766 
-S.2395047E-02 
-5.SB69500E-02 

TABLE 4 
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CU OF SERIES 
FN 

0»i500000 

0.1700000 
0.1300000 
0.1900000 
0.2000000 
0.2100000 
0.2200000 
0.2300000 
0.2400000 
0.2500000 
0.2600000 
0.2700000 
0.2300000 
0.2900000 
0.3000000 
0.3100000 
0.3200000 
0.3300000 
0.3400000 
0.3500000 
0.3600000 
0.3700000 
0.3800000 
0.3900000 
0.4000000 
0.4100000 
0.4200000 
0.4300000 
0.4400000 
0.4500000 
0.4600000 
0.4700000 
0.4300000 
0.4900000 
0.5000000 

60 BY THIN SHIP THEORY 
CU 

1.5642904E-04 

1.7B77462E-04 
1.54S4S15E-04 
3.2726990E-04 
3.1323647E-04 
6.1639393E-04 
4.6245S03E-04 
5.633032'1E-04 
7,3234SSSE-04 
6.7022053E-04 
9.7922562E-04 
1.9637999E-03 

3.1S7S450E-03 
3.978V402E-03 
4.08S5573E-03 
3.6507312E-03 
3.0360S43E-03 
2.563540 ^-£-03 
2.4557943E-03 
2.7579736E-03 
3.4142092E-03 
4.3464079E-03 
5.42742S1E-03 
6.54')3572E-03 
7.632574iE-03 
S.6329531E-03 
9.5007615E-03 
.0223173E-02 
.0S04V/4E-02 
.12S2402E-02 
.1572327E-02 
.1776S97E-02 
.1383665E-02 
.1911326E-02 
.1875643E-02 
.17B8206E-02 

TABLE i.l 
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CU OF SERIES 60 BY TENT FUHCTJON 

FN 
0.1500000 
0.1600000 
0.1700000 
0.1800000 
0.1900000 
0.2000000 
0,2100000 
0.2200000 
0.2300000 
0.2^00000 
0.2500000 
0.2600000 
0.2700000 
0.2S00000 
0.2900000 
0.3000000 
0.3100000 
0.3200000 
0.3300000 
0.3100000 
0.3500000 
0.3600000 
0.3700000 
0.3300000 
0.3900000 
0.1000000 
0.4100000 
0.4200000 
0.4300000 
0.4400000 

0.4500000 
0.4600000 
0.4700000 
0.4300000 
0.4900000 
0.5000000 

CU 
2.4S08920E-04 
2.3110764E-04 
2,017304SE-04 
3.29')3016E-04 
2.9188229E-04 
6.0311245E-04 
4.3828145E-04 
5.57919S0E-O4 
7.79S6B22E-04 
6.8394287E-04 
8.4232009E-04 
1.65<52661E-03 
2.7370204E-03 
3.A766626E-03 
3.5897B'J4E-03 
3.2035706e-03 
2.649S660E-03 
2.2480863E-03 
2.193123SE-03 
2.5413223E-03 
3.2472506E-03 
4.2115953E-03 
5.3208461E-03 
6.'571B015£-03 
7.5S33R2iE-03 
S.5993325E-03 
9.4859647E-03 

.0227S97c-02 

.0823034E-02 

.127B12')E-02 

.1605371E-02 

.lSiy660E-02 

.1936721E-02 

.1972012E-02 
,1939375E-02 
.1S53USE-02 

TABLE    5.2 



CW OF SERIES 60 BY GUILLOTOH'S METHOD 

FN 
0.2200000 
0K2250000 

0.2500000 
0.2/50000 
0.2800000 
0.3000000 
0.3250000 
0.3500000 
0.3750000 
0.4000000 

3.9758420E-04 
1.1717812E-04 
5.389S746E-04 
1.61')V9i6E-03 
l,8237114E-03 
2.0692')07E-03 
1.75S9367E-03 
2.201094SE-03 
3.7149263E-03 
5.4445704E-03 

TABLE 5.3 
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SERIES £0 - UAUE FKUFILE FOR FN^O.22 

X/L 

-o^ysooooo 
-0.3500000 
-0.7ii00000 
-0.6500000 
-OK5500000 

-0.4500000 
-0.3500000 
-0.2500000 
-0.1500000 
-5.0000012E-02 
5.0000072E-02. 
0.1500000 
0.2500000 
0.3500000 
O.'55O0O0O 
0.5500001 

0.6500000 
0.7500000 
0.8500000 

0.9500000 

ETAl 
(THIN SHIP) 
0.^052546 
0.2790930 
0.139134S 

-3.04&3189E-02 
-0.13')-4233 
-0.1549724 
-0.1423066 
-0.1343226 
-0.1540230 
-0.1522S11 
-9.5033862E-02 
-5.iBS1522E-02 
-7.6246202^-02 
-0.1506103 
-0.2100194 
-0.2064162 

-0.1501326 
-3.2319311E-02 
0.1001317 
0.3296069 

EfA2 
(GUILLOTON) 
0.2315694 
0.2355324 
0.1201823 
4.3013575E-03 
-7.3074095E-02 
-9.7014703E-02 
-0.1259955 
-0.1618298 
-0.1976098 
-0.1813136 
-3.4S73907E-02 
-3.6006354E-02 
-9.3320206E-02 
-0.2163067 
-0.230S19S 
-0.1120181 

-3.SS240i7E-02 
3.9135136E-02 
0.1017799 

0,2181377 

TABLE 6 
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SERIES 60 - WAVE PROFILE FOR FN-0.2S 

X/i EIAl 
(THIN SHIP) 

ETA2 
(GLULLOTOH) 

0.9500000 0.223S901 0.2162S61 
0.B500000 0.27SSS40 0.2473029 
O.7SO0O00 0,2543935 0.212S761 
0.6500000 0.14e-;i09 0.121S956 
0.5500000 -3.1022')55E- -03 -4.0665506E- -03 
0.4500000 -0.156-1357 -0,1235684 
0.3500000 -0.2781956 -0.2168195 
0,2500000 -0.3320102 -0,2676115 
0,1500000 -0,3126534 -0.2665314 
5.0000012E-02 -0.215'1710 -0,2022085 
5.0000072E-02 -6.4463660E- -02 -S,2536S24E- -02 
0.1500000 5.333358SE- -02 5,31253i7E- ■03 
0.2500000 7.1774252e~ -02 5.8623S22E- -03 
0.3500000 -9,4510239E- -03 -9,566763SE- -02 
0.^500000 -0.141-0241 -0,2418211 
0.5500001 -0.2593456 -0.2371797 
0.6500000 -0.3152425 -0.13236S7 
0,7500000 -0.2571712 ~4.7155460E- -03 
0,3500000 ~S.602U17E- -02 9,1400079E -02 
0,9500000 0.2325647 0,1986911 

TABLE     7 
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SERIES 60 - UAVE PROFILE FOR FMKi,35 

-0.9500000 
-0.S500000 
-0.7500000 
--0.6500000 
-0.5500000 
-0.4500000 
-0.3500000 
-0.2500000 
-0.1500000 
-5.0000012E-02 
5.0000072c-02 
0.1500000 
0.2500000 
0.3500000 
0.4500000 
0.5500001 
0.6500000 
0.7500000 
0.8500000 
O.V500000 

ETAl 
(THIH SHIP) 
0.159B^29 
0.22S6S67 
0.252.<'!06 
0.2171163 
0.i;%21755 
1.8033024E-02 

-0.10S5.n9 
-0.2237^32 
-0.3122759 
-0.347B464 
-0.3151197 
-0.2474 389 
-0.1B53730 
-0.1449H56 
-0.12.W086 
-0.10S2036 
-9.143,T.093E-02 
-4.3124321E-02 
3.3734221E-02 
0.2016155 

ETA2 
(GUILLOTOM) 
0.162 ■'5244 
0.2191626 
0.22-57555 
0.1332153 
0.1060407 
3.155S215E-03 

-0.1079524 
-0.2123257 
-0.2958371 
-0,3209364 
-0.2697356 
-0.2003765 
-0.1501113 
-0,1323662 
-0.120S397 
-9,33540541.-02 
-4.5507133E-02 
2.7673233E-02 
9.02773t*lE-02 
0.13745S9 

\ 

TABLE S 
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CU OF STRUT-LIKE HULL FORM 

FN 
0,1500000 
0.1600000 
0.1700000 
O.ISOOOOO 
0,1900000 
0.2000000 
0.2100000 
0.2200000 
0.2300000 
0.2100000 
0,2500000 
0.2600000 
0.2700000 
0.2S00000 
0.2900000 
0.3000000 
0.3100000 
0.3200000 
0.3300000 
0.3^00000 
0,3500000 
0.3600000 
0,3700000 
0.3300000 
0.3900000 
0.4000000 
0,4100000 
0.4200000 
0,4300000 
0.4100000 
0.4500000 
0.4600000 
0.4700000 
0.4300000 
0.4900000 
0.5000000 

CU 

S.1065660E-03 
7.96Syi93E-03 
l.lS3'1559E-02 
1.3S3002SE-02 
i.l27S905E-02 
1.66'!7350E-02 
2.0269290E-02 
1.3012156E-02 
2.2B6J522E-02 
3.653315'5E-02 
3,51l5.!640£-02 
2.5204040E-02 
2,0714201E-02 
2.5712179E-02 
3.67145ir:t-02 
4.6577137E-02 
5.23SS411E-02 
5.29'K/5e9e-02 
4.9453609E-02 
4.'5190176E-02 
3.S1875/SE-02 
3.2S21029E-02 
2.8930973E-02 
2.6151S75E-02 
2.45052S7E-02 
2.4020765E-02 
2.42776S7E-02 
2.436629SE-02 
2.5&42041E-02 
2.6556<)71E-02 
2.7502513E-02 
2.3336283E-02 
2.8961323£~02 
2.9364inE-02 
2,95S6717E-02 
2,967E321E-02 

TABLE 9 
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CU OF UERTICAL CYLINDER (ELLIPSE) 

FM CW 
O.IDOOOOO e,S57jS?0E-04 
0►1600000 9 ► 167A152E-04 
0.1700000 l,600(i032E-03 
O.ISOOOOO l,6S57B15£-03 
0,1900000 1.7954743E-03 
0,2000000 l,S60y503E-03 
0,2100000 3,0337i02E-03 
0,2200000 l,9151iS16E-03 
0,2300000 2.2S72433E-03 
0,2100000 A , 187V127e-03 
0,2500000 4.314S3i6E-03 
0,2600000 3,2122706E-03 
0,2700000 2.3391165E-03 
0,2300000 3,0583299E-03 
0,29 OOCC 0 5,057614 8E-03 
C, 3000000 7,09 •r.5723£-03 
0,3100000 8.362S912E-03 
0,3200000 e►4790550E-03 
0,3300000 7.6176650E-03 
0,3400000 6,28'16607E-03 
0.3500000 4,9132030E-03 
0,3600000 3,S907151E-03 
0,3700000 3.5135 497E-03 
0,3800000 3,SI VJOSOE-OS 
0.3900000 4,7721504E-03 
0,4000000 6,3313<193E-03 
0.4100000 S.3550513E-03 
0,4200000 1,0679S20E-02 
0,4300000 1.3172153E-02 
0,4400000 1,572753ie-02 
0.4500000 1.S254505E-02 
0,4600000 2.06y3146£-02 
0,4700000 2,2922015E-02 
0 ,4800000 2 . ')96245ie-02 
0.4900000 2,6773e39E-02 
0 .5000000 2. S35 ■.995E-02 

rABLf: 10 
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CU  OF VERTICAL CYLINHER (OGIVE) 

FN C14 
0.1500000 1.9S423B2E-04 
0,1600000 1.97'!.«2y£-04 
0.1700000 2.47i05&9E-04 
O.ieOOOOO S.061256SE-04 
0.1900000 3.i890722E-04 
0.2000000 7.399&390E-04 
0.2100000 7.2S0245SE-04 
0.2200000 t;.3021929c-04 
0.2300000 i.2436036E-03 
0.2400000 1 .6757681E-03 
0.2500000 1.239'l?26E-03 
0.260000C S.62937948-04 
0.2700000 1.3696615E-03 
C,2S00000 2.ti775360E-03 
0.2900000 3.7B54777E-03 
0.3000000 4.3772173E-03 
0.3100000 4.2124372E-03 
0.3200000 3.5016793E-03 
0,3300000 2,649S21SE-03 
0.3400000 2.0569409£-03 
0.3500000 1.9S773S5E-03 
0.3600000 2.5956937E-03 
0.3700000 3.8906352E-03 
0.3S00000 5.7809562E-03 
0.3900000 8.i459163E-03 
0.4000000 1.0S3979')E-02 
0.4100000 1,3707S73E-02 
0.4200000 1.6616650E-02 
0.4300000 1.9462420E-02 
0.44 00000 2.216503 ■1E-02 
0.4500000 2.4663635E-02 
0.4600000 2.6916677e-02 
0.4700000 2.8901495E-02 
0 .4S00000 3.061 U61E-02 
0,4900000 3.2049727E~02 
0.5000000 3.3227F.72E-02 

TAiiLE 11 
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CU OF FULLY SUBMERGED BODY BY SLENDER THEORY 

FN 
20 

0»3100000 
0►3200000 
0^3300000 
0,3-100000 
0,3500000 
0/3600000 
0,3700000 
0,3300000 
0,3900000 
0,^5000000 
0,4100000 
0,4200000 
0,4300000 
0,4100000 
0,4500000 
0,4^.00000 
0,4700000 
0,1300000 
0,4900000 
0,5000000 

5,62S7299E-05 
>J,S9'52002E-05 
3,4715700E-05 
2,3403100F>05 
2.6173600E-05 
5,2705702E-05 
1.0943770E-04 
l,989B469E-04 
3.20433iME-04 
4,70131B!h"-04 
6,426393SE-04 
8,3163672E-04 
1.0306530E-03 
1,23359S9E-03 
l,4351032F-03 
l,630.V332E-03 
l,SlAV931E-03 
l,9907914E-03 
2,1508590E-03 
2.295SS50E-03 

■-1   - 

TABLE     12 
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Computation of Non-linear Wave Resistance 

by Young S. Hong 
David Taylor Naval Ship Research and Development Center 

Bethesda, Maryland  U. S. A. 

I. Introduction / 

In order to Improve the predictions of the thin-ship theory, a non-linear 
wave making resistance equation has been developed. In this method, the body 
boundary condition is exact, and the free-surface condition is linearized. An 
iteration method is used to compute the wave resistance. The first Iteration 
is the solution of the thin-ship theory. In this presentation, the number of 
iterations is ten for all models. The results of two models are compared with 
experimental data and show Improved correlation. 

II. Equations for the Non-linear Wave Resistance 

The coordinate system, oxyz, is defined to be fixed to the ship. The oy- 
axis is directed vertically upward and the ox-axis is positive towards the stern. 
The oxz-plane is the undisturbed free surface. We assume the ship moves at a 
constant speed U in the negative x-dlrection. This is equivalent to keeping the 
ship fixed, but free to trim and sink, and letting the fluid flow in the 
positive x-direction with speed U. It is assumed that the fluid is incompres- 
sible and inviscid and the flow is Irrotational. The velocity potential function 
(})(x,y,z) for the present problem is to solve the following conditions: 

1. Laplace equation in the fluid domain 

32(),    a2^    32((, 

  +   +   

9x2 3v2 9z2 
=  0 (1) 

2. the body boundary condition 

fx'I'x +  fy'l'y + '(>z  =  Ufx,  on  z = f(x,y) 

3. the kinematic condition on the free surface 

(2) 

^X*5 Iz't' Z^Z Urix. on  y =  ri(x,z) (3) 

4. the radiation condition: the disturbance vanishes sufficiently fast far ahead 
of the ship 

lim R(<j)x2 + ^J-  + /SfJ-)   =0,  R = (x2 + z2)l/2 (4) 
X^oo 

5. the bottom condition: the normal velocity to the bottom is zero 

(})y(x,y,z)  =  0,  as y +  -«> (5) 
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The boundary conditions, Equations (2) and (3) are exact. The numerical solution 
of Equation (1) with these exact boundary conditions is at present impossible. 
The thin-ship theory has been developed with linearization of these two boundary 
conditions! . In the process of the linearization, it is assumed that the deriva- 
tives of (j), f and n are small and their multiplications are neglected. Then the 
linearized body boundary condition becomes 

(t),  = Uf x» on 0 

and the linearized free-surface condition is given by 

<(>y = -UTIX'  O'^ y = 0 

(6) 

(7) 

The solution of Equation (1) with these two boundary condition is called 
Mlchell's thin-ship theory. 

In the process of the linearization of the body boundary condition, there 
are two points to be mentioned. The derivative of the hull function with respect 
to X, fx, is usually small. However, when the ship has a parallel middle body, 
this derivative function is more concentrated at the bow and stern. The 
derivative of the hull function with respect to y, fy, is far larger than f^ in 
proportion to the L/H ratio. Therefore, the simplification of the exact body 
boundary condition neglecting the multiplication of fx and fy with other terms 
is likely to include obvious misrepresentation of the hull function. 

The exact body boundary condition. Equation (2), is applied in solving 
Equation (1) in order to include the effect of fx and fy. However, the linearized 
free-surface condition. Equation (7), is substituted for the exact condition. 
This is necessary since solution of the Green function for the exact free- 
surface condition is at present impossible. The present approach to compute 
the wave resistance is the numerical solution of Equation (1) with the partially 
linearized boundary condition 

*z  = Ufx fx<t> XH-X fy(|)y,    on    Z  =  0 (8) 

and the linearized free-surface condition, Equation (7). The other boundary 
conditions are given by Equations (4) and (5). 

The solution can be written in integral form as      j 

()>(x,y,z)  =    rG(x,y,z;x',y',z')())2dx'dy' 
2ir J J 

(9) 

and   the  wave  resistance   is   given  by 

R     =     -2pU       <t>xfxdxdy (10) 

The free-surface wave elevation is given  from Equation (7) as 

n  =  _(f)x(x,0,z) ! 

g 

*Numbers in superscript designate references at the end of the paper. 
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The Green function in Equation (9) is given by Wehausen and Laitone^ as 

G(x,y,z;x',y',z')  = - [(x-x')2 + (y-y')2 + (z-z')2]-l/2 

+ [(x-x')2 + (y+y')2 + (z-z')2]-l/2 

TT/2     °° 
4ko r r cos[k(x-x')cos9]cos[k(z-z')sin6] 

• d9sec2ecpdkexp[k(y+y')] 
T[   " " k - koSec2e 

0       0. 
TT/2 

+  4ko j desec2eexp[ko(y+y')sec2e]sin[ko(x-x')sece]cos[ko(z-z')sinesec28] (12) 

0 
In the numerical computation, an iteration method has been applied. First, 

Equation (9) is computed with Equation (6) for (j)2(this is Michell's thin-ship or 
first-order solution) . Then, (f)x and (j)y are numerically evaluated and Equation (9) 
is recomputed with Equation (8) for (ji^ (this is called the non-linear solution). 
The result is compared with the previous result, and the process is repeated until 
a convergence test is satisfied. The numerical results converge after 5-10 
iterations depending on the hull form. 

III. Numerical Results 

Numerical computations have been carried out for the hull forms whose 
principal dimensions are given in Table 1. The units of all dimensions are not 
indicated throughout this report since the final results are wave resistance 
coefficients. Except Series 60, CB=0.6 hull, all hulls are idealized mathematical 
forms. The computed wave resistance coefficients are given in Tables 2 to 5 and 
in Figures 1 to 5. The non-dimensionalized wave elevations are given in Tables 7 
to 9, and those for the Wigley and Series 60 hulls are plotted in Figures 10 
and 11. 

The results shown in this paper are for the tenth iteration. The number of 
iterations depends on the hull form. As a numerical test, for a strut-like hull 
(round end), the results of the fifteenth iteration have been compared with those 
of the tenthe iteration and the agreement was very good. After this numerical test, 
the number of iterations was taken as ten for all other hulls. 

The computed wave resistance coefficients are compared with the experimental 
data for the Wigley and Series 60, 0^=0.6, hulls. The results for the Wigley hull 
show moderate improvement compared with the experimental results given by Shearer 
and Cross^. The results of Series  60 show very good agreement with the experiment 
conducted by Kim and Jenkins'^. Furthermore, the wave elevation calculated by the 
present method (non-linear) shows better agreement with the measured wave elevation 
than the first-order results. 

For other hull forms, the experimental data are not available and therefore, 
it is difficult to say whether the results of the present method have been improved 
compared to the first order results. While Strut-like hull and Vertical cylinder do 
not have any draft-wise change of the beam, the derivative of hull function with 
respect to y, fy, is zero. Therefore, the last term in Equation (8) is zero and the 
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non-linear results are only due to the effect of the second term. In most cases, the 
influence of the third term is dominant in the non-linear results. Because of this 
fact, for the Strut-like hull and Vertical cylinder, the non-linear results are 
different from the first-order results, but the general tendency is similar. 

In the computation of the wave resistance of the Vertical cylinder, there is 
one difficulty in handling the infinite draft. While the present computer program 
uses the precomputed master table for the Green function, Equation (12), to save the 
computer time, there is a limit set for the highest values of the draft. The details 
for the creation of the master table are given in References (6) and (7). In this 
table, the draft and Froude number are limited with 2H/(LFn )=6.5. For lower Froude 
number, the draft can be larger and for the higher Froude number, the draft becomes 
smaller. In the present numerical computation, for example when the Froude number 
is 0.375, the maximum draft will be 4.57. For this Froude number, the wave resis- 
tance coefficients for five different drafts (1.5, 2.25, 3.0, 3.75, and 4.5) are 
computed with S=40.466 which is the wetted surface area for H=1.5, and these results 
are plotted in Figure 6. From this figure the wave resistance for H='» are extra- 
polated. The extrapolated wave resistance coefficient at this Froude number is 1.2 
for the non-linear method and 1.05 for the first-order results. 

The hull form of the submerged spheroid is somewhat different from the hull 
hull forms. While the program is organized to take the offset as input data, the 
centerplane of the hull should be rectangular. With the rectangular center-plane 
consisting of the major and minor axes of the centerplane  of the spheroid, the 
grid points are generated in this rectangle shown in Figure 7 and the offset at 
these grid points are input data. When the grid point is outside of the centerplane 
of the spheroid, the hull function at this point is zero. Therefore, the input 
offsets taken with this procedure are not so accurate as the original spheroid 
offsets near the boundary of the centerplane of the spheroid. This inaccuracy causpf? 
some errors numerical computation of f^ and fy. The computation of wave resistance 
of the spheroid is only to check whether the present computer program, which has 
been written for all general hull forms, is suitable for computation of wave resis- 
tance of s hull form like as  submerged spheroid. The computed results show some 
discrepancies from the test conducted by Farell and Guven" and from the calculation 
done by Farell". 

The changes in wave resistance coefficients for different number of iterations 
are shown in Figures 8 and 9. The interesting point is that the wave resistance of 
Series 60 hull becomes negative at the second and third iterations when the 
Froude number is 0.222 and later the resistance becomes positive. 

The non-linear method improves the results of the thin-ship theory for two 
hull forms compared with the experimental data. The next step must be to  apply 
this method to other hull forms such as naval and high speed commercial ships. 
Further improvements to the present method will include the effects of sinkage 
and trim on the computation. 

107 



IV. References 

1 Wehausen, J. V.,"Ship Hydrodynamics II - Wave Resistance," Lecture Note 
NA241, The Dept. of Naval Arch, and Offshore Engineering, Univ. of Cal. Berkeley, 
1972 

2 Wehausen, J. V. and E. V. Laitone, "Surface Waves," in Handbuch der Physik, 
vol. 9, pp 446-778, 1960 

3 Shearer, J. R. and J. J. Cross, "The Experimental Determination of the 
Components of Ship Resistance for a Mathematical Model," Transaction of the Royal 
Institute of Naval Architects, vol. 107, pp 459-473, London, 1965 

4 Kim, Y. H. and D. Jenkins, "Trim and Sinkage Effects on Wave Resistance with 
Series 60, CB=0.6," DTNSRDC Report DTNSRDC/SPD-1013-01, Sept. 1981 

5 Huang, T. T. and C. von Kerczek, "Shear Stress and Pressure Distribution on 
a Surface Ship Model; Theory and Experiments," 9th Symposium on Naval Hydrodynamics, 
Office of Naval Research, Paris, 1972 

6 Yeung, R. W.,"Sinkage and Trim in First-order Thin-ship Theory," Journal of 
Ship Research, vol. 16, No. 1, pp 47-59, March 1972 

7 Hong, Y. S.,"Numerical Calculation of Second-ojrder Wave Resistance," Journal 
of Ship Research, vol. 21, No. 2, pp 94-106, June  1977 

8 Farell, C. and 0. Guven, "On the Experimental Determination of the Resistance 
Components of a Submerged Spheroid," Journal of Ship Research, vol. 17, pp 72-79, 
June 1973 

9 Farell, C, "On the Wave Resistance of a Submerged Spheroid," Journal of Ship 
Research, vol. 17, pp 1-11, March 1973 

lOR 



CO 

§ 
•H 

g 

M 

^ 
^ 

•a <T\ 
ID    -O <f (» 00 
bO   -H c» r^ CT^ in 
iJ     O lO        o^ u~i rH 

8    in         ON  rH (U     M in o    •    • • 
B     0) U-|   rH   ^   CO O in             C^   rJ 

XI    JZ 
3     &. 

C«     C/3 

* 
vO* 
vD   00 

<U eg m -*   vD 
(-1 > r-t a     • ^ 

<>     O       •   rH    rH QJ •H • 
T3 M ~3-  iH  iH o <f   O   CS   rH 
C O 

•H 
rH 

.H * 
CO Q) CJN* 
O cc CO   CO 

•H ex M in vO  00 
♦J •H <!■         '^   o r-t • t^ 
M ^ O- O    •   8 « 8     CM       •   as   r-i 
0) rH <1-  iH  iH o <f   O   CM   rH 
> W 

T3 e C \D 
VJ Cd in o 
p cs              ir\ in r~. c:^ vo 
fn T3 en        ir\ r^ T-\ O     •   00 

C CO  O     •     • • • r^    •ON 
iH 3 ro iH T-i o o O  CM  O  CM  r^ 
.H O 
3 pt:; 

^ 13 
•H c vD 
iH w in o 

1 TH             in in r-~ c:> vc 
U a c<^       in r-- rH O     •  00 
3 VJ CO o    •    • • • r-^    • cjv ^ CO CO   rH   rH   O o O  CM   O CM  r^ 

4-1 ^ 
C« CO 

o o 
v£> CO      • 

n CO CO   CM 
CO ro CO CO m r^ • 
m CM o    •    • ^ O   CO   vO in 

•H CM   O   CO   rH • •  r-^     '  r-t • 
u cN <a- m CN o O  CM  O  CM  r^ r-{ 
OJ II 

C/3 

c 
^ 
li 

r^ 
>, in r-~ ~* 0) 
cu in CM   O^J   <!• n 

TH r-{                    CN T-t vO    • o- CO 
M rH   O • •  CJ^     •  rH 

•H rH   CM   CM   rH o O m o CM r-~ CD 
13 

3 
rH 

CO 
O > 
z 

O OJ 
r-t 2; o CO 
0)    O. ij tj       m     z OJ 
-a PH m ffi -^-v. ■^ oo u    • x: 
O   HJ pq Cd           +J hJ H s Crt  12 * 

109 



Table: 2 Wave Resistances of Wigley and Series 60 

Wigley Hull Series 60 

Fn 1st order non-linear Fn 1st order non-linear 

0.266 0.0938 0.1098 0.222 0.0323 0.0190 
0.313 0.1847 0.1724 0.252 0.0660 0.0428 
0.350 0.1204 0.1456 0.282 0.3170 0.1233 
0.402 0.2711 0.1739 0.302 0.2804 0.1659 
0.452 0.4079 0.2332 0.323 0.1964 0.1561 
0.482 0.4408 0.2649 0.353 0.3156 0.1626 

xlO-2 xlO-2 xlO-2 xlO-2 

Table: 3 Wave Resistances of Strut-like Hull Form 

Fn 

Sharp End Round End 

1st order non-linear 1st order non-linear 

0.200 0.1712 0.0702 0.1093 0.1325 
0.212 0.1945 0.0961 0.1443 0.1570 
0.225 0.1526 0.0387 0.0964 0.1248 
0.238 0.2692 0.1652 0.2142 0.2281 
0.250 0.2786 0.1774 0.2296 0.2474 
0.262 0.2004 0.0929 0.1532 0.1907 
0.275 0.1794 0.0680 0.1290 0.1834 
0.288 0.2504 0.1377 0.1995 0.2533 
0.300 0.3299 0.2162 0.2797 0.3286 
0.325 0.3666 0.2487 0.3177 0.3683 
0.350 0.2808 0.1615 0.2325 0.2953 

xlO-1 xlO-1 xlO-1 xlO-1 
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Table 4: Wave Resistance of Vertical Cylinder 

Fn 

Ellipsel Ogive2 

1st order non-linear 1st order non-linear 

0.225 0.0964 0.0725 0.2211 0.1519 
0.238 0.1695 0.1362 
0.250 0.2119 0.1702 0.3305 0.2558 
0.262 0.1533 0.1168 
0.275 0.1116 0.0865 0.4539 0.3457 
0.288 0.1615 0.1330 0.7790 0.6287 
0.300 0.2316 0.1969 0.9196 0.7623 
0.312 0.2742 0.2319 0.8376 0.6897 
0.325 0.2750 0.2300 0.6450 0.5300 
0.338 0.4752 0.3672 
0.350 0.1860 0.1480 0.4490 0.3380 
0.360 0.5517 0.4387 
0.370 0.7403 0.6118 
0.375 0.1280 0.1000 1.2000 1.0500 

xlO-1 xlO-1 xlO-2 xlO-2 

1  S=42. 639 when L=l( ) and H=1.5 
2  S=40. 466 when L=l( ) and H=1.5 

Table 5: Wave Resistance of Submerged Spheroid 

Fn 1st order non-linear Fr 

0.29695 0.0989 0.300 
0.32170 0.0644 0.325 
0.34645 0.0415 0.0278 0.350 
0.37119 0.0187 0.0078 0.375 
0.39594 0.0513 0.0241 0.400 
0.42068 0.8199 0.425 
0.44543 1.1108 0.450 
0.47018 1.2935 0.475 
0.49492 1.4658 0.500 

xlO-2 xlO-2 

m 



Table 6: Wave Elevation (2gri/u2)  of Wigley Hull 

2x/L 
Fn = 0.266 Fn = C ).482 

1st order non-linear 1st order non-linear 

-1.0 0.314 0.276 0.101 0.094 
-0.9 0.266 0.218 0.136 0.124 
-0.8 0.152 0.099 0.143 0.123 
-0.7 -0.021 -0.060 0.113 0.081 
-0.6 -0.150 -0.151 0.072 0.030 
-0.5 -0.205 -0.156 0.031 -0.016 
-0.4 -0.187 -0.106 0.006 -0.050 
-0.3 -0.121 -0.043 -0.038 -0.070 
-0.2 -0.042 -0.002 -0.064 -0.078 
-0.1 0.013 0.006 -0.087 -0.081 
0.0 0.022 -0.014 -0.105 -0.079 
0.1 -0.012 -0.044 -0.124 -0.078 
0.2 -0.071 -0.069 -0.133 -0.074 
0.3 -0.126 -0.079 -0.140 -0.076 
0.4 -0.151 -0.076 -0.143 -0.082 
0.5 -0.136 -0.065 -0.144 -0.076 
0.6 -0.089 -0.052 -0.142 -0.072 
0.7 -0.031 -0.046 -0.136 -0.078 
0.8 0.016 -0.044 -0.127 -0.089 
0.9 0.052 -0.030 -0.109 -0.089 
1.0 0.089 0.0 -0.085 -0.077 

1 
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Table 7: Wave Elevation (2gri/u2) of Series 60 

Fn  =  ( D.222 Fn  = 0.302 
2x/L 

1st  order non-linear 1st   order non-linear 

-1.0 0.295 0.255 0.158 0.142 
-0.9 0.292 0.231 0.231 0.190 
-0.8 0.215 0.143 0.261 0.193 
-0.7 0.057 0.0 0.215 0.123 
-0.6 -0.081 -0.092 0.113 0.020 
-0.5 -0.150 -0.104 -0.022 -0.077 
-0.4 -0.156 -0.078 -0.161 -0.143 
-0.3 -0.139 -0.069 -0.273 -0.180 
-0.2 -0.135 -0.094 -0.330 -0.185 
-0.1 -0.141 -0.122 -0.318 -0.157 
0.0 -0.129 -0.111 -0.240 -0.107 
0.1 -0.102 -0.067 -0.128 -0.048 
0.2 -0.092 -0.041 -0.031 -0.010 
0.3 -0.117 -0.065 0.012 -0.018 
0.4 -0.161 -0.114 -0.006 -0.064 
0.5 -0.191 -0.135 -0.066 -0.118 
0.6 -0.176 -0.108 -0.134 -0.138 
0.7 -0.098 -0.056 -0.171 -0.112 
0.8 0.045 -0.025 -0.137 -0.046 
0.9 0.223 0.140 -0.009 0.050 
1.0 0.404 0.263 0.162 0.154 
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Table 8: Wave Elevation (2gri/u2) of Strut-like Hull 
Form (Sharp End) 

Fn  =  0.250 Fn = C ).350 
2x/L 

1st   order non-linear 1st  order non-linear 

-1.0 0.637 0.482 0.384 0.322 
-0.975 0.943 0.672 0.553 0.431 
-0.95 1.144 0.804 0.701 0.531 
-0.925 1.196 0.852 0.802 0.606 
-0.9 1.132 0.835 0.829 0.638 
-0.85 0.804 0.683 0.767 0.619 
-0.8 0.355 0.424 0.626 0.534 
-0.7 -0.553 -0.231 0.213 0.239 
-0.6 -1.066 -0.762 -0.201 -0.100 
-0.5 -1.005 -0.904 -0.518 -0.397 
-0.4 -0.482 -0.588 -0.671 -0.554 
-0.3 0.157 -0.046 -0.669 -0.587 
-0.2 0.547 0.376 -0.563 -0.515 
-0.1 0.524 0.469 -0.401 -0.369 
0.0 0.174 0.244 -0.218 -0.216 
0.1 -0.260 -0.116 -0.038 -0.059 
0.2 -0.518 -0.391 0.120 0.079 
0.3 -0.474 -0.440 0.232 0.183 
0.4 -0.200 -0.271 0.286 0.232 
0.5 0.088 -0.042 0.259 0.209 
0.6 0.173 0.049 0.138 0.097 
0.7 -0.018 -0.106 -0.059 -0.106 
0.8 -0.386 -0.456 -0.301 -0.376 
0.85 -0.624 -0.726 -0.449 -0.556 
0.9 -0.880 -1.049 -0.621 -0.771 
0.925 -1.037 -1.276 -0.736 -0.920 
0.95 -1.326 -1.750 -0.921 -1.163 
0.975 -1.804 -2.603 -1.264 -1.631 
1.0 -2.374 -3.658 -1.718 -2.268 
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Table 9: Wave Elevation (2gri/u2) of Strut-like Hull 
Form (Round End) 

2x/L 
Fn = 0 .250 Fn = 0.350 

1st order non-linear 1st order non-linear 

-1.0 1.658 0.968 1.242 0.808 
-0.975 1.966 1.030 1.178 0.726 
-0.95 1.918 1.508 1.161 0.685 
-0.925 1.515 0.981 1.178 0.719 
-0.9 1.091 0.825 1.055 0.719 
-0.85 0.267 0.467 0.674 0.564 
-0.8 -0.404 0.075 0.389 0.387 
-0.7 -1.210 -0.588 -0.121 0.030 
-0.6 -1.265 -0.887 -0.478 -0.273 
-0.5 -0.727 -0.728 -0.680 -0.480 
-0.4 0.019 -0.246 -0.740 -0.524 
-0.3 0.574 0.233 -0.639 -0.497 
-0.2 0.673 0.462 -0.466 -0.436 
-0.1 0.351 0.359 -0.298 -0.285 
0.0 -0.154 0.022 -0.107 -0.127 
0.1 -0.553 -0.297 0.071 0.012 
0.2 -0.612 -0.428 0.220 0.126 
0.3 -0.329 -0.347 0.293 0.201 
0.4 0.060 -0.135 0.306 0.220 
0.5 0.261 0.025 0.237 0.137 
0.6 0.099 -0.070 0.017 -0.066 
0.7 -0.313 -0.399 -0.262 -0.337 
0.8 -0.709 -0.694 -0.517 -0.643 
0.85 -0.830 -0.765 -0.630 -0.768 
0.9 -0.849 -0.691 -0.712 -0.827 
0.925 -0.818 -0.603 -0.739 -0.848 
0.95 -0.740 -0.458 -0.755 -0.839 
0.975 -0.583 -0.193 -0.737 -0.769 
1.0 -0.382 0.131 -0.691 -0.672 
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A Slender-Body Solution for the Centerplane 

Distribution for the Wigley Ship Form 

by 

L. Landweber and Sangseon Ju 
Iowa Institute of Hydraulic Research 

The University of Iowa 

Introduction 

The Wigley ship form which is being considered in the present Workshop, has the 

equation 

|yp| = f{x,t) =-^ (1 - t^)(h^ - x^); Itl < 1, Ixl < h       (1) 
h 

with b = 0.100 and h = 0.125, This form is slender except near the bow and stern 

where it becomes thin. Here t, y, and x denote longitudinal, lateral, and vertical 

coordinates. This unusual notation was chosen so as to reserve z = x + iy as a 

complex variable. Solutions for the irrotational flow about this double body in a 

uniform, unbounded stream in the t-direction can be obtained in terms of 

distributions of sources or the velocity potential on the hull surface. On the 

other hand, there is no assurance that a solution expressed in terms of a 

centerplane distribution exists, , 

If it exists, a centerplane distribution would yield two important 

advantages. The first is that, in performing subsequent wave-resistance 

calculations, the difficult evaluation of a singular line integral around the hull 

contour at x = 0 would be avoided. The second is that a procedure for including 

effects of viscosity on wavemaking resistance [1] could then be directly applied. 

For these reasons, and because the hydrodynamic problem of proving the existence of 

a centerplane distribution and developing an algorithm for its calculation is an 

interesting classical problem, the present investigation was undertaken. 

In the present work, we shall present a procedure for determining whether a 

slender-body solution in terms of a centerplane distribution exists and apply it to 

the case of the Wigley form (1). 

127 



Conformal Mappings of Transverse Sections 

The exterior mapping of ogivelike sections into a unit circle will be performed 

in two stages, of which the first is the transformation which maps the exterior of 

the ogive, having the same edge angles at x = ± h, into the exterior of the unit 

circle in a W-plane, 

W-1  ,z-h ^ 
W+1 -(M)- *=i^. t--lS . (2) x=h 

m 
This yields a profile without corners, resembling an ellipse, with nearly equal 

ajor and minor axes, in the W-plane; see Fig. 1.  The exterior of this profile 

could then be mapped into the exterior of the unit circle by the infinite series 
00       l-2n 

W = ^IQ  ^2n-l ^        '  ^^^   ""^ ^^^ ^°^"^ that,   for the forms of present interest, a 

very good approximation could be obtained by truncating the series at n = 2, i.e. by 

W = a .? + -^ + ^; ? - P£''*, W = RJl''^ (3) 
?, 

The coefficients of (3) are selected so as to satisfy the conditions 

W(l) = 1, W(i) = iH, /¥dW = 2iS^ 

where H is obtained from (2) and S], is the area of the profile in the W-plane. 

These yield the equations 

a_-^ + 3^ + 83-1, a_-^ - a^ + 33 = H, a_^- a^ - Sa^ =  S^/ir     (4) 

which can be readily solved for a_i, ai and 33. Here H is given by 

H = cot (A arctan h/c), c = b (1 - t^) (5) 

The transformation (3) has four branch points, obtained from dW/dc = 0, at 
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Also the origin 0 in the W-plane maps into the two pairs of conjugate points given 

by 

and shown as 0;]^, O2, O3, O4 in Fig. 2.  The cut in the W-plane given by the path 

B1OB2OB3OB4OB1 yields the closed curved path B1O1B2O2B3O3B4O4B1 in the c-plane 

which demarcates the region of regularity where the mapping is one-to-one.  The 

curves in the c-plane are given by 

P^ - ■^— {a^ + [a^ + 4a_^a3(2 cos 2(j) + 1)]^^^}, 0 < (|) < ((.Q^     (8) 

p 2 _ 1„.  . . r 2  .,  ,  ,0 ...  o.   .N-,1/2 
2a {- a^ + [a^ - 4a_^a3 (2 cos 2(j) - 1)] ' }, (f>Q^ < <}> < 2    (9) 

• 1 

where ((JQ-, is the argument of ? in the first quadrant.     ' 

The axis ACB of the parabolic section in the z-plane becomes the circular arc 
ACB (and its mirror image in the real axis) in the W-plane, and then the curve ACB 
or the pair of curves AC2 and C^B according as OC > or < "OB^ in the W-plane. The 

equation of the circular arc is 

? 7    \ 17 
R = [1 + tan 3 sin 6] ' - tan 3 sin 6 , g = Aa (10) 

which gives, when 6 = TI/2, 

OC = sec B - tan 3 = cot ^-^     1 (11) 
2 

IT -a 

Also, putting ?„„ = in„, we obtain, by (3) and (4), 

— ^1  ^3  ? "1 
0^2 = ^-1^2-T^^-f = 4(2a_in2-7r:) (12) 

The foregoing condition then becomes 

.2//,      p        a 
_   4 {2a 1 n„ - - 

iT-a       3^-12  n 
cotl#>or<4(2a_,n,-^)    , ('3) 
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We shall see that, when TIC < M^, it will not be possible to find a solution in 

terms of an axial distribution alone, although slightly modified sections with the 

same value of c/h, may have such solutions. This was found to be the case for the 

parabolic sections of the Wigley form (1) for |t| < 0.63. On the assumption that 

the wavemaking resistance would be insensitive to these slight changes in section 

shape in the midship part of the form, if the draft and the contour at the free 

surface were preserved, it was decided, for the midrange, to use the modified forms 

2yp 
y = n j-Yr> ' ^' " ^1^ (1^) 

[(1+y)'^ - 4YX' l^/"^ + 1 - Y 

where, by (1), yp = c(l-x'^), c = b(l-t^).   This form coincides with y 

when T = 0 and becomes the ogive with the same values of c and h when Y = Y = 
? 2 ° c /h . For the ogive, however, the transformation from the W to the c-plane is W = 

z, which yields no branch points; i.e. Wp = 0. This suggests that, by varying the 

parameter Y continuously from 0 at the junction with the last parabolic section to 

c'-l\\'-  at the midsection t = 0, the condition OC > OBp could be satisfied at all the 

sections, and an exact slender-body centerplane source distribution may be obtained 

for a slightly modified ship form. The selected relation is 

2 
Y =^ (1 - T2)2 (2 + T2), T = t/t. (15) 

2h'^ ^ 

where t = tj at the junction of the parabolic and modified section. This satisfies 
2  2 the continuity conditions that dy/dt = 0 at t = 0 and tj  and that Y  =  \i l\\    at t =  0 

and Y = 0 at t = tj. 

Formulation of Slender-Body Approximation and Its Solution 

Let u, v, w and $ denote the components of the disturbance velocity and the 

disturbance velocity potential for the ship form in a stream of unit velocity in the 

t-direction.    The boundary condition  on the hull   surface  is then 

30 8t      ^     ,,      ^2      ^2>-l/2 
37 = - 87^ ^ ^t (1 ^ ^ ^ ^) 

where n denotes distance in the direction of the outward normal to the hull 

surface.  In the direction n' normal to a transverse section (at a fixed value of 
,1 

t), we find 
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|i-. =ft (l^w)(l.f^)-l/2;f^(l.f2)-l/2 (16) 

assuming that w « 1. If also $,, << $  and $ , then we have 
^ tt   XX    yy 

' ■   ' i 

$  + $  * 0 (17) 
XX   yy . ^ ■' 

Equations (16) and (17) pose an exterior, two-dimensional Neumann problem. For the 

Wigley form, (16) becomes , 

(3$/9n') = - 2bt (1-X'^)(1+4YQX'^)"^/^ (18) 

and, for the modified form (14), we have 

_ _ 4bt (1-x'^)    ^'"' ^p  f..^C)^..=di        ■ 

We   shall    solve   this   problem   for   the   unit   circle   in   the c-plane,   where   the 

boundary condition 

8$       8$     idz  dWi       ^,.. , \ ,^„, 
3F=37f   IdW  dfl   =  ^(*)'  P   =   1 ; (20) 

is given by (2) and (3). One can then show that the solution for a source 

distribution a ((j;) on the contour of the unit circle, obtaining by solving the 

Fredholm integral   equation of the second kind for this  exterior Neumann  problem,   is 

o  =~ [F(<^)  -^] = G(<j),t)/TT (21) 

where 2irM is the total flux through the section. This is the same as the flux 

through the unit circle, and hence, by (16), the total source strength M is given by 

where S is the section area. Thus the complex potential n = $ + iY is given by 
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1 ^        ... 
^(?.t)=^/ G((l)',t) £n (c-e'"'' ) dr, P > 1 (23) 

0 

For the parabolic and modified sections, we find for M 

%--^ (24) 

M = - ^ [11^ arcsin 2^ - l . ,] . £^1, [lll^ arcsin |^ + Y ^ 3]   (25) , 
^  2/f ^^^ A-ny'^       2/T ^ 

As is well known [2], solutions of the two-dimensional slender-body problem, 

such as (21), do not satisfy the condition that the potential vanish at infinity. 

This anomaly is overcome by treating the solution as an inner one which is matched 

with a three-dimensional outer solution in the method of asymptotic expansions. 

Here we shall take a different approach. At each transverse section, (23) will be 

applied to find an equivalent axial distribution of sources, i.e. a distribution 

along the x-axis, if it exists. Each two-dimensional source element, m2dx, will 

then be replaced by its equivalent three-dimensional source element, m dx dt, where 

m = m2/2. This would yield a centerplane distribution of three-dimensional sources, 

the potential of which vanishes at infinity. 

If an axial distribution m2(x) exists, it is given by 

^       /       n\ IT   /CK dC dW, fr.c\ 
"12 =7v(x,0) = -7 Im (df dW dY^ACB (26) 

where ^ 

f- = 7/ G(c^,t) i^-l'^')'  dr, P > 1 (27) 
-IT 

Thus, in order to evaluate (26), we must be able to continue the function of a 

complex variable (27), analytically, into the unit circle to the arc ACB, or the 

pair of arcs AC2 and Cj^B. In the latter case, the normal component of dn/d? would, 

by symmetry, have a discontinuity (equal but opposite magnitudes) of the real 

component along CB2 in the W-plane, indicating the presence of a source distribution 

along CB2. In the Wigley form, this would yield a distribution on the horizontal 

centerplane bounded by the internal contour generated by the branch points B2 and 

84. 
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The foregoing result, that the slender-body singularity system is given by a 

pair of distributions on orthogonal centerplanes, is interesting, but not useful for 

application to wavemaking calculations, since the Havelock Green function would be 

singular at the horizontal centerplane. In order to avoid this complication, the 

section shapes of the Wigley form in its midrange were gradually modified so that 

the branch points Bg and B4 were excluded from the interior of the original section 

in the z-plane, as was discussed in the previous section. 

In order to continue dn/dc into the unit circle, consider the Taylor expansion 
of the function about an exterior point ? , 

0 

f =.^^ (^ -^0)"'       ' (28) n=0 

where, by (27), 

1 ^^^^^{^Q)          1^   G(<i.',t)d<))' 
^ - TTT ——n  = - F / —W ;TiTr' " = 0' ^'  2,...     (29) 

8?^ -TT (£    - c^) 

The circle of convergence of the series (28) extends until a singularity of the 

function is encountered. These occur at the branch points. A, B, B^, 63, B3, B4. 

Also, because the imaginary parts of dfi/d? at opposite sides of the diameter AB are 

equal in magnitude but have opposite signs, singularities will be distributed along 

AB unless this quantity is zero. Substitution into (26) then yields 

1  - u         (dc/dz)(?-?)" 
m2(x,t) =-^ 2 / G(<()',t) Im  j^ F+T" d'(>' (30) 

TT  n = 0 -TT (SI ^    -c ) 
0' 

for points c on ACB.  If the series (30) converges, it can be truncated at a 

sufficiently large value of n = N-1 with negligible error. We then have 

^2^^'^^ " 2 ^dW dz J „ U'    "-^ ■ ("Ir '  ^ ^^ ^ (^^^ 
0 

The resulting value of mo must be independent of both c and N. 
^ . 0 
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Numerical Evaluation 

In order to evaluate m (or m = y m^), the various factors of (31) were first 

expressed in polar form and combined to yield the imaginary part. The result, for 

large values of N, was a real, oscillatory integrand of very large amplitude for 

At each value of t, the integral was computed by Simpson's rule with 1000 

points for five different points ? . With each <; , values of the integral were 

obtained for a succession of values of N, beginning with N = 20. Eventually, for N 

'> 100, some values of E became so large that, even with double precision, the 

differences between the ordinates of the quadrature formula were meaningless. It 

was found, however, that, for most points of the arc ACB, the integral yielded a 

consistent value of m2» independent of ^ and N, before the limitation of computer 

accuracy had been reached. Least accurate results were obtained near the keel point 

B. These were corrected by smoothing the values of m2» using a least-squares cubic- 

spline fit. The smoothed set of values of m(x,t) are given in Table 1 and graphed 

in Figs. 3 and 4. 

The accuracy of the values of m2 was verified by computing the corresponding 

values of 3$/3n' from the axial distribution and comparing the results with the 

exact slender-body boundary condition. The agreement was greatly improved by the 

smoothing, which gave an error of less than 0.02 percent. 

Graphs of the centerplane distribution at various horizontal sections are shown 

in Fig. 4. The nonzero values of m(x',l) shown in the figure are a consequence of 

the smoothing procedure. Actually, m(x,t) must approach zero as t ->- 1, but with an 

infinite slope at t = 1, a sharp approach to zero occurring for t very close to 1, 

Near the extremities of the body, where the transverse sections are thin, and 

near the keel, the slender-body distribution agrees well with the second-order thin- 

ship solution. Closer to the free-surface level, x' - 0, the results by the two 

methods are seen to differ greatly. 

In the continuation of this work, the present slender-body distribution will be 

substituted into an iteration formula for solving the integral equation [1] for the 

modified Wigley form to obtain, at least, a second approximation. 
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Table 1 -  Slender Body Centerplane Source Distribution for 

Wigley Model with b/h= 0.8 and l/b= 10. 

t= 0.05  t= 8.15  t= 0.25  t= 0.35  t= 0.45  t= 0.55  t= 8.65  t= 0.75  t= 0.85 

0.00000 -0.02601 -0 07155 -0.10231 
0.02500 -0.02541 -0 06962 -0.09909 

0.05000 -0.02372 -0 06445 -0.09063 
0.07500 -0.02121 -0 05696 -0.07876 
O.lODOl -0.01810 -0 04805 -0.06532 
0.12500 -0.01464 -0 03866 -0.05213 
0.15000 -0.01105 -0 02957 -0.04067 
0.17500 -0.00752 -0 02107 -0.03099 
0.20000 -0.00420 -0 01335 -0.02274 
0,22500 -0.00126 -0 00656 -0.01562 
0.25000 0.00112 -0 00087 -0.00931 
0.27500 0.00235 0 00360 -0.00355 
0.30000 0.00397 0 00695 0.00161 
0.32500 0.00462 0 00936 0.00608 
0.35000 0.00492 0 01098 0.00974 
0.37500 0.00499 0 01198 0.01250 
0.40000 0.00493 0 01251 0.01430 

0.42500 0.00479 0 01265 0.01528 
0.45000 0.00459 0 01250 0.01566 
0.47500 0.00436 0 01213 0.01565 

0.50000 0,00410 0 01162 0.01546 
0.52500 0.0C3B6 0 01104 0.01524 
0.55000 0.00362 0 01042 0.01499 

0.57500 0.00340 0 00976 0.01465 
0.60000 0.00317 0 00908 0.01418 
0.62500 0.00293 0 00841 0.01352 
0.65000 0.00269 0 00774 0.01266 
0.67500 0.00245 0 00709 0.01164 
0.70000 0.00222 0 00648 0.01056 

0.72500 0.00200 0 00591 0.C0951 
0.75000 0.00179 0 00539 0.00857 
0.77500 0.00161 0 00494 0.00780 

0.80000 0.00143 0 00451 0.00715 
0.82500 0.00127 0 00407 0.00653 
0.85000 0.00111 0 00359 0.00587 

0.87500 0.00095 0 00302 0.00507 
0.90000 0.00077 0 00236 0.00410 
0.92500 0.00059 0 00165 0.00301 

0.95000 0.00040 0 00096 0.00192 
0.97SCO 0.00020 0 00035 0.00092 
1.00000 o.ccaoo 0 00000 o.oooeo 

-0 

11269 -0. 
.10913 -0. 
09986 -0. 
.08699 -0. 
07263 -0. 
.05890 -0. 
04748 -0. 
.03824 -0. 
03067 -0. 
.02420 -0. 
.01831 -0. 
.01255 -0. 
.00702 -0. 
.00188 -0. 
.00268 -0. 
.00645 -0. 
.00931 0. 
.01137 0. 
.01279 0. 
.01375 0. 
01438 0. 
.01485 0. 
.01517 0. 
.01532 0. 
.01529 0. 
.01506 0. 
.01464 0. 
.01404 0. 
.01332 0. 
.01251 0. 
.01165 0. 
.01078 0. 
.00990 0. 
.00898 0. 
.00304 0. 
.00704 0. 
.00600 0. 
.00486 0, 
.00358 0, 
.00212 0. 
.00000 0, 

0,10639 

09779 
08592 
07280 
06042 
05038 
04249 
03617 
03079 
02575 
02059 
01536 
01029 
00560 
00148 
00189 
00459 
00673 
00843 
00981 
01096 
01190 
01265 
01318 
01351 
01365 
01358 
01334 
01293 
01235 
01163 
01083 
00998 
00918 
00846 
00784 
00708 
00587 
00391 
00000 

-0,09308 
-0,09094 

-0.0B533 
-0.07745 
-0.06851 
-0.05968 
-0.05196 
-0.04535 
-0.03963 
-0.03456 
-0.02992 
-0.02553 
-0.02137 
-0.01745 
-0.01376 
-0.01035 
-0.00721 
-0.00435 
-0.00176 
0.00056 

0.00262 
0.00441 
0.00597 
0.00730 
0.00842 
0.00936 
0.01014 
0.01075 
0.01118 
0.01142 
0.01148 
0.01134 
0.01103 
0,01058 
0.01004 
0.00942 
0.00874 
0.00779 
0.00635 
0.00419 
0.00000 

-0.07237 
-0.07146 

-0.06900 
-0.06538 
-0.06098 
-0.05621 
-0.05139 
-0.04664 
-0.04202 
-0.03758 
-0.03340 
-0.02953 
-0.02592 
-0.02257 
-0.01943 
-0.01649 
-0.01371 
-0.01109 
-0.00863 
-0.00635 
-0.00424 
-0.00229 
-0.00051 
0.00112 
0.00260 
0.00396 
0.00518 
0.00627 
0.00718 
0.00791 
0.00841 
8.00869 
0.00879 
0.00877 
0,00870 
0.00866 
0.00861 
6.00826 
0.00723 
0.00510 
0.00000 

-0.05374 
-0.05347 

-0.05271 
-0.05150 
-0.04990 
-0.04796 
-0.04574 
-0.04328 
-0.04067 
-0.03796 
-0.03520 
-0.03246 
-0.02975 
-0.02708 
-0.02448 
-0.02193 
-0.01946 
-0.01709 
-0.01481 
-0.01265 
-0.01061 
-0.00871 
-0.00693 
-0.00525 
-0.00367 
-0.00214 
-0.00068 
0.00070 
0.00196 
0.00305 
0.00393 
0.00462 
0.00513 
0.00556 
O.OC600 
0.00651 
0.00709 
0.00740 
0.00703 
0.D0556 
0.00000 

-0.04060 
-0.04052 

-0.04031 
-0.03994 
-0.03944 
-0.03830 
-0.03802 
-0.03711 
-0.03608 
-0.03495 
-0.03373 
-0.03242 
-0.03104 
-0.02959 

-0.02807 
-0.02648 
-0.02485 
-0.02318 
-0.02148 
-0.01978 
-0.01810 
-0.01644 
-0.01482 
-0.01320 
-0.01158 
-0.00994 
-0.00829 
-0.00666 
-0.00510 
-0.00365 
-0.00234 
-0.00123 

-0.00022 
0.00074 
0.00176 
0.00291 
0.00419 
0.00522 
0.00558 
0.00480 
O.DODOO 
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The Second Workshop on Ship Wave Resistance Computations 

An Application of New Slender Ship Theory 
to Series 60, C^  = 0.60. 

by 

H. Maruo and M. Ikehata 

I. Introduction 

A new approach to solve the flow around a slender ship with forward velocity 

was presented and wave resistance was formulated newly by one of the authors in 

1982 ). This new slender ship theory is based on the asymptotic expression of the 

Kelvin-source, that is the kernel function of the Neumann-Kelvin problem, around its 

track. The solution of the boundary value problem is equivalent to an approximation 

to the Neumann-Kelvin problem. The normal velocity on the hull surface is 

determined by an integral equation of the second kind of the Voltera type instead of 

one of the Fredholm type of the Neumann-Kelvin problem. It is solvable numerically 

by the marching procedure without great time-consuming matrix calculations. This 

method is expected to enable the numerical computation of the flow field around the 

hull of a ship to be more accurate even with the limited capacity of today's 

computers. 

Some numerical results for Series 60, C^ = 0.6, hull are presented in this 

paper. The wave pattern and wave resistance are computed at two Froude numbers, 

0.267 and 0.304. These results are better than those of Michel!'s theory in 

comparison with measured results. However, it costs much time to compute not only 

wave resistance but also wave pattern over some range of Froude numbers. More 

improvements are strongly desired in the numerical procedure. 

Let us begin with the digest of this new slender ship theory for the 

convenience of explanation. 
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2. Digest of the New Slender Ship Theory^' 
2.1 Asymptotic expression of the Kelvin-source around its track 

Consider a uniform flow of velocity U in the positive direction of x axis with 

the origin on the still water surface, y axis horizontally perpendicular to the x 

axis and the z axis vertically downwards. As is well known, the velocity potential 

of a source at the point x = x', y = y', z = z', under the free surface for the 

linearized condition, the Kelvin-source, is given by 

1  1 
- - + —r + G' Y  V 

(1) 

where 

2 2 Y = /(x - x') + (y - y') + (z - z') 

Y' =/(x - x')^+ (y - y')^+ (z + z')^ 

(2) 

_      2     — 2k  ir/2   j     °° t COS tz - k sec e sin tz 
G' = —^ /   sec^e de /  2 ^ 5  

""  -Tr/2        0   t + k^ sec 9 

exp [- tlx" cos 6 + y sin 6 I ] dt 
(3) 

-4 k/  e"'^o^ ^^^ ^ sin(k 7 sec e + k 7 sec e tan e) sec^e de, for y > 0 

where kg = g/U^ 

x' = x-x',y = y-y',7=z + z' (4) 

e^ = tan"-^(-x / y), - TT/2 < e^< TT/2 (5) 

In order to derive the asymptotic expression of G' around the 7 axis, let 

lyl and lYI tend to zero. The double integral term of (3) becomes 

^'^0 /^^   2^ Aa   r    t exp (-t|7| cos 9) ,^ —- /   sec 9 d9 /   f^—M 4-^ dt 
""  -Tr/2        0   t + k^^ sec 9 

= -T^ + -^{Hi(kj7|) - Yi(kj7|) -^} ^^^ 
|x| 
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where H^ is the Struve function and Y^  is the Bessel   function.    The single integral 

term of (3)  approaches 

-4k/ e" 0^ ^^^ ^sin(k 7 sec e  + k 7 sec 6  tan e)  sec^e  de 

00 _     2 

= -8k^ /    e''^o^ "    sin(k 7u)  cos(k V u/u^- 1) —H— du 
1 0 0 -^ 

oo     _ 2 _ '^^ -^ 

- -8/ir   /    e"^^    sin(x/ir v)  cos   (yv^)  dv + - + 4Trk  YJk x)     (7)    . 
u        g O — 0   i      0 

for 7 > 0 ^"d vanishes for 7 < 0. Hence, the asymptotic expression of G' may be 

written in the form 

G' - 7rk^H^(k^|x - x'|) + {^l<QY^(k^|x - x'|) + 2|x - x'|"S{l + 2 sgn (x - x')} 

- 2kQ - Vir E  (7, 7, I)  {1 + sgn   (x - x')} (8) 

where 

00-2 

E(x, y,  z)  = /    e"        sin  (x/k v)  cos  (yv  ) dv i (9) 
0 ° 

The term of E represents the diverging wave, while the transverse wave is 

represented by 4Trk Y,(k 7). Other terms are symmetric in 7 and represent local 

disturbances. 

I 

2.2 Velocity potential for the slender ship 

Put a slender ship in the uniform stream, with the origin of the coordinate 

system at the intersection of the bow with the free surface and the x axis in the 

center plane of the ship, positive astern. We assume the irrotational motion of an 

inviscid incompressible fluid. 1 

With the velocity potential in the form Ux + <t>, the disturbance velocity 

potential i> can be given the following expression according to the Green's third 

formula, under the condition of the linearized free surface. 
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where S is the hull surface below the still water, n is the outward normal on the 

surface and G is of course the Kelvin-source given by (1), 

Put <i> == (j), + (jjp corresponding to G = (-l/y + l/y') + G'. On account of the 

assumption of a slender ship, introducing the asymptotic expression (8) of G', the 

expressions for <!), and <i) near the hull can be written as follows: 

*^ ^^ c(x) ^^^   1^"   (y-y')2+ (z + z')2 

+ {TTk  Y,(k   Ix  - x'D  + 2|x  - x'|"H{l + 2 sgn   (x  - x')}] / V ds 
0  i    01^ (^^^,j       n 

--^/    dx'/ (^ . ♦^I^)  E  (X. y.  z)  ds (12) 
0 C(x   ) 

where C(x) is the contour of the hull surface at each transverse section at x, 

ds(y', z') is the length element on C(x), v is the normal drawn outwards to C(x), 

and 

H^pv  = V^ (13) 

The potential ()>, diminishes at infinity in the fashion like a dipole and 

vanishes at z = 0, while E (7, y, 7) is a plane harmonic function in the lower half 

space vanishing at infinity.    By Green's  reciprocal  theorem, 

C(x') 

=  -2/ V  rx', y")  E  (x, y,  z)  dy' (14) 
.       b(x') 

where   b(x') = the half breadth of waterline. 

V f ^      ^^h " (15) 
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Therefore, (fip becomes ^ 

+ {^k Y (k |x - x'D + 2|x - x'T-^Kl + 2sgn(x - x')}] /   V ds 
^10 (,^^.j n 

2/k  X 
+ -r^I    dx' /    V (x'. y') E (x - x', y - y', z) dy'   (16) 

0    b(x') ^ 

Next we consider the boundary value problem. The boundary condition on the 

hull surface is given by 

^= - Un -^ (17) 9v       X  9v 

for a slender ship, n^ is the x-component of the outward normal unit vector on the 

hull surface. 

If we put 

Hy i - 
V = - Un - ^ i       (18) n     X  9v i       ^^"' 

(17) coincides with (13).  The second term 3(|)„/8v denotes the effect of the free 

surface. 

To solve this boundary value problem by the conformal mapping, let us define 

the complex number Z = y + iz and ? =5 + in. We consider a mapping function Z 

= f(c) which maps the lower half region z > 0 and exterior to C(x) onto the lower 

half region n > 0 and exterior to a unit circle in the ?- plane, as shown in Fig. 1. 

The normal velocity V^ on C(x) in Z-plane is transformed to Vp on the unit 

circle in the ?- plane. 

Vn(^) -\   \w\ i^ = ^n l^'(^^'^)| (19) 
C = e 

Considering antisymmetry of <i>, with respect to z and ^, (f, can be expressed in 

terms of v (>|J ) as 
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The vertical velocity V^ can then be derived from (20) and (15) as 

V, = ; ^   , r vjv)-^—^^^^^^^ dr (21) 
^|f'(c)| 0 "  e^ + 1 - 25 cos IP' 

Substituting (21) into (16) and taking the normal derivative, we obtain the 
normal velocity due to (j) . 

3*2      ^^ X    00   E*{x - X', f(e^'^) - f(?)} e^'* .„. 

8v     m 7T  Jg ^^ J/z      |f'(e^'^)l ^^ 

* * where   I,,, means the  imaginary part,  E7is 8E /9Z    and 

"     .  2 
E*(x,  Z)  = -  i    /    e^^ ^ sin(v/ir7)  dv (23) 

0 ° 

From (18), (19), (21) and (22), the boundary condition may be written in the form 

2v k  X   *** 
v„ = - Unjf'(e^'^)| + 1^-7-^/ dx' / EJ {x - x', f(e^'^) - f(?)} f'(5) dC 

x{rrFTnT/'%(^')-i—'-^^^^ d^'>        (24) i ^ ^^ ^ I  0 "    5 ^ + 1 - 25 cos i|;' 

This is an integral equation for v^ as a function of x and ip. Since it is of the 

Voltera type with respect to x, the marching procedure can be effectively applied to 

the numerical solution. 

2,3 Wave profile and wave resistance 

The free surface elevation is determined by Bernoulli's theorem and the 

condition of constant pressure. 

The formulas (20) for ((>, and (16) for . show that the quadratic terms in (25) 

concern only the singular part of the potential. 

146 



The wave resistance can be determined by the Havelock's formula 

00 2 

R^ = 16 IT  p  k^^ /     |H(u)|^ —iJ— du 1 (26) 

^ /u^-  1 

where H(u)  is the Kochin function defined by 

3(t) 

H(u)  =—//s (TFT-hk)  ^^P   (-^""^^ ■'■^^" + ikyu/u^-l)  dS (27) 

Employing similar relations to (7) and (14) then the wave resistance is given by the 
following 

OO      I 00 

2    2 _ 2 
■^w =7P "^n ^     \^    ^^ ^ V (x,y) exp (ik x/v + ik yv) dyi dv 
^     ""        °  0  0   b(x) ^ °      ° 

,   L L 1        ? 
+ ^p/ dx/ Vds/ dx' /    V ds [ 2 -|^ y^(^ - ^'^^ 

""   0   C(x) "   0    C(x') "   (x - x')^  ^000 

2(3^Y, {k^(x-x')}] (28) + 

The first term on the right hand side is the resistance due to the diverging wave 

and the second term is that due to the transverse wave. 

3. Numerical Results of Application to Series 60 

The numerical procedure is shown in the flow chart. Fig. 2, First of all, the 
mapping function f(?) must be determined at each section of the ship.  Next, the 

solution of the integral equation (24) yields v {i)).  Once  v {^)  is solved, V 

Vp, (j)^ and (1)2 are derived successively.  These enable the wave profile H and the 

wave resistance R„ to be calculated. 

We take the length of the ship to be a unit and use the well-known three 
parameter form^) as the function f(c). ' 

-1    -3    -5 
f(c) = p(? + a^?  + agC  + ag?  ) (29) 

The coefficients p, a^^ ^^ and 35 which were selected by Ogiwara and the authors^) 

are available.  These are shown in Fig. 3, together with the body plans of the 
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original hull form and of the three-parameter form. The calculations of Vp(i|j,x) and 

Vz(x,y) have been carried out for forty one sections shown in Fig. 3 . At the bow, 

Vp(t^,0) can easily be shown to be 

v^(ip,0) = - Un^ |f'(e^''^)| (30) 

At the second section, the contribution due to Vp(i|j,0) in the second term of 

equation (24) should be added to - Un |f'(e^''^)|. At the subsequent sections, all 

contributions due to Vn(i(;,x'), x' < x, should be added in a similar procedure. 

We have chosen three Froude numbers, 0.00, 0.267 and 0.304, for the first 

examples because of the limitation of cost and time. The longitudinal distributions 

of Vp ((CJX) along the curve of >|^ = 9° are shown in Fig. 4, and the sectional 

distributions at the two sections are given in Fig. 5. The results for Fp = 0.267 

deviate more than those for F^ = 0.304 from those for zero Froude number. 

The normal velocity V^ on the frame line and the vertical velocity V^ on the 

load water-line are both easily calculated from v_. The wave resistance has been 

obtained by integration of (28), with V^ and V^ substituted at two Froude numbers 

only. These are given in the first column in Table 1. There are three other wave 

resistance coefficients referred to in Table 1 for comparison. One is a computation 

of the Michell integral by Suzuki-Kanagawa. The others are towing-test and wave 

analysis results with a 3-m ship model at the Yokohama National University Ship 

Model Basin. Fig. 6 shows the comparison. Both points of the present theory are 

closer to the curve of towing test results than the Michell integral; but they are 

still too high. 

If we take into account a correction for a finite draft of the Kelvin-source in 

calculating the transverse wave term by 

(T/^e' °'dz)2. (1 - jkj)2 (31) 

the coefficients of wave resistance computed are reduced to 1.60 x 10""^ at F^ = 

0.304 and to 1.35 x lO""^ at F^ = 0.267. This is an improvement. 

The wave profile alongside the hull is shown in Figs. 7 and 8, and the wave 

pattern in Figs. 9 and 10. The agreement with measurement is seen to be fairly good 
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in comparison of the wave profiles in Figs. 7 and 8. If the transverse wave were 

corrected by the effect of a finite draft of the Kelvin-source, we would get better 

agreement. In the present compuation, the free-surface elevation was calculated 

directly by numerical differentiation of the total velocity potential <j) in three 

directions, so that we could not separate the transverse wave for correction. 

It is seen in the wave-pattern comparisons of Figs. 9 and 10, that the computed 

heights of all crests exceed twice of the measured ones. Apart from this, the two 

wave patterns resemble each other well. 

4. Concluding Remarks 

We have obtained promising results by applying a new slender-ship theory. 

Another merit of this theory is that it avoids the inconsistent treatment of the 

Neumann-Kelvin approximation. It is necessary to improve the numerical procedure 

for time saving in order to collect more results of application. 
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Table 1 Wave Resistance Coefficents of Series 60, Cj^ = 0.60 

R 
C.. X 10^ X 10^ w \  pV^S 

Computation Experiment 

Froude Maruo's Michell Towing Wave 

Number NSST(2) Integra!(3) Test(4) Analysis(5) 

0.22 0.56 

0.23 0.74 

0.234 0.72 0.30 

0.244 0.67 0.39 

0.253 1.06 0.39   0.15 

0.259 1.70 0.56 

0.267 2.29 2.57 

0.271 2.99 0.75   0.31 

0.280 3.69 0.97   0.52 

0.290 3.93 1.38 

0.299 3.62 1.62   0.79 

0.304 2.46 3.34 

0.308 3.11 1.86   0.77 

0.318 2.58 1.78 

0.327 2.32 1.73   0.79 

0.336 2.42 1.77 

0.345 2.84 2.01 

0.354 2.26   1.14 

Remarks: 

(1) Measured by Model,  of which particulars are 

L      =  3m,  B = 0.400 m,  d = 0.16m, V  = 0.11632 m"^,  S =  1.535 m^. 

(2) New Slender Ship Theory developed by Maruo,   1982. 

(3) Interpolated     values     at     testing     Froude     Numbers     from     Suzuki-Kanagawa's 

calculation. 

(4) C^^ = Cj -  (1+k)  C^Q, where Cj is total  resistance coefficient,  k is form factor 

(0.27 determined) and Cfo ''^ Schoenherr's frictional   resistance coefficient. 

(5)    By longitudinal  cut at y/L PP 1.33. 
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Ship Hull  G-eometry 

f(?) 

r\: Froude No. 

V^r^ (f) : e^. (24) 

Vz: e%.(2\) 

<p,:e^.(2d) Cp^ : e^. 06) 

Vn=Vlfte^5^;l 

<l>=^^,+^2 

VC/> 

Ffre Surface 
Elevation 
H : e$. (2^) 

I 

Wijv'e Resistance 

p^cj. 2        Flow Chart of Numerical Procedi^re 

of New Slender Ship Theory  (NSST) 
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A NUMERICAL INVESTIGATION OF THE 

SLENDER-SHIP WAVE RESISTANCE APPROXIMATION 

Carl A. Scragg ' 
Science Applications, Inc. 

Introduction 

In a recent program funded by the Naval Sea Systems Command, SAI performed 

numerical calculations of the total resistance of some representative destroyer hull 

forms [1]. For the calculation of the wave resistance, we developed a computer code 

which employs Noblesse's zeroth-order slender-ship wave resistance approximation 

[2]. That particular approximation was chosen because it allows one to perform wave 

resistance calculations which are only slightly more complicated than the evaluation 

of Michells' integral, and yet the results of Koch and Noblesse [3] suggest that, 

at least for some hull forms, the slender-ship approximation can lead to results 

which approach the generally good agreement with experimental values obtained by 

some of the more complex computer codes (e.g. see Dawson [3] and M. S. Chang [3]). 

The agreement which we obtained between the measured and calculated wave 

resistance for those destroyer hull forms was quite encouraging. In the present 

investigation we have used that same computer program to calculate the wave resist- 

ance of all of the hull forms suggested by the organizers of the workshop plus one 

high-speed transom-stern hull (the ATHENA). It is hoped that, through the efforts 

of the participants in this Second Workshop on Ship Wave Resistance Calculations, 

we will begin to understand the range of hull forms for which the zeroth-order 

slender-ship approximation leads to results which are in good agreement with higher- 

order theories and/or experimental results. 

The theoretical development of the slender-ship approximation can be found 

in [2] and our own numerical approach to the evaluation of the wave resistance is 

discussed in [1]. We use a Green function approach in which singularities (Havelock 

sources) are distributed over the hull surface S and along the waterline C. The 

velocity potential <^  can be written as 
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■■  fds  a G + /*dl n^ T a G 

S       C 

where  a = source density, 

G = Green function, 

n = longitudinal component of the hull normal vector, 
A 

and   T = lateral component of the waterline tangent vector. 

In the zeroth-order slender-ship approximation, the source density is proportional 

to n and direct computation of the velocity potential is possible. We use a 
A 

panelization technique in which we assume that the hull surface can be approximated 

by a collection of flat panels over which the source density is constant. Over each 

flat panel, the singularity distribution can be integrated analytically. 

Results for High-Speed Transom Stern Ships 

Our initial results were for the two destroyer hull forms discussed in 

[1]. Each hull was panelized with 158 triangular panels on the half-body (port- 

starboard symmetry is assumed) as shown in Figure 1. These hulls have large bulbous 

bows and transom sterns. As suggested by Gadd [3] during the last workshop, the 

transom sterns were left open. A hydrostatic resistance component was included to 

account for the first-order effect of unwetting the transom, as suggested by both 

Gadd and Chang [3]. The results are compared to the experimentally determined 

residuary resistance in Figure 2. We are in general, quite pleased with the 

agreement both qualitatively and quantitatively. We are especially pleased that 

both experimental results and numerical predictions indicate a similar low Froude 

number region in which one hull has the lower wave resistance and a high Froude 

number region in which the other hull has the lower wave resistance. 

Encouraged by these results, the wave resistance of the ATHENA was calcu- 

lated. The hull was panelized with 240 triangular panels on each half body and the 

results are presented in Figure 3. In the last workshop, this particular hull proved 

to be most troublesome, but two participants (Dawson and Chang) did present results 
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which were banded by the experimentany determined residuary resistance and the wave 

pattern resistance, at least for the fixed sinkage and trim case. The present results 

are not in as good agreement as those presented by Dawson or Chang, exhibiting too 

great a hump in the resistance curve near a Froude number of 0.45. We note that the 

results for the destroyer hulls were also too high relative to experimental values 

at this Froude number, but the discrepancy was not as great. 

Wigley Hull Results 

For the Wigley hull, we used 100 triangular panels to model this smoothly 

curving surface. In Figure 4, the results of our calculations are compared with 

earlier published results calculated by Koch and Noblesse [3]. The experimental 

values shown here are Lackenby's 1965 results [4] which have been corrected for 

sinkage and trim effects using calculations by Dawson [3]. The agreement with Koch 

and Noblesse's results is an indication of the adequacy of the number of panels which 

were used. In fact, we found that doubling the number of panels would change the 

results by less than one percent. As a check on our code, we have also calculated 

a few values of the wave resistance using thin-ship theory and a few more using 

Hogner's approximation (the waterline integral is ignored). The agreement with Koch 

and Noblesse's results is yery  good. 

Series 60, Cg = 0.60, Results 

The Series 60 hull was modeled by 241 triangular panels, using the provided 

table of offsets to determine the corners of the panels. The results of our calcu- 

lations are shown in Figure 5. The experimental results all include the effects of 

sinkage and trim while the calculations do not. The agreement between the predic- 

tioned and the measured values is unacceptable and we can not expect that the inclu- 

sion of sinkage and trim in the calculations would improve the situation. In 

examining the results of the last workshop, it was noticed that Hong's [3] results 

using thin-ship theory were qualitatively similar and quantitatively only slightly 

higher than these results. Interestingly, the significant differences found between 

the thin-ship results and the slender-ship results for the Wigley hull (~ 20% at 

Fn = 0.30), are much smaller for the Series 60 hull (~ 5% at Fn = 0.28). 
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Results for a Strut-Like Hull Form 

A simple strut with vertical sides and a constant draft (0.075) was 

considered. The water!ine is defined by 

y = ± 0.075 • 8x (1- 2x) i < x < i 

y = ± 0.075 -i- < X < i 

y = ± 0.075 Fl- 16 (x+0.25)2]i 4 < —  A  _   4      , 

The sharp end of the strut presents no particular difficulties in panelization, and 

it was represented by 10 quadrilateral panels. For the elliptical end, we must be 

much more careful since the slope of the water!ine curve becomes infinite at the 

stern. Since we are approximating the continuously varying source strength by a 

constant over the dimensions of one panel, it is important that the panel size be 

small enough for this approximation to be valid. The criterion which we used here 

(determined by limited numerical experimentation) was that the panel dimensions must 

be so small that the continuous source strength will always be within 10 percent of 

the constant value by which it is being approximated. This leads to panel lengths 

near the elliptical end of 0.5 percent of the strut length. In total, the ellip- 

tical end was modeled with 15 quadrilateral panels of varying lengths. The predicted 

wave resistance is shown in Figure 6. 

Results for Two Vertical Cylinders 

Calculations of the wave resistance of two vertical cylinders were 

performed and the results are presented in Figures 7 and 8. In all cases, the depth 

was taken to be so large that the cylinder was approximately two dimensional. The 

waterplane area was used to non-dimensionalize the wave resistance: 

waterplane area = 0.1178 for the ellipse, 

waterplane area = 0.10045 for the ogive. 

The panelization of the ellipse required the same criterion on panel length which 

was used for the elliptical end of the strut-like hull form. This resulted in 48 

panels of varying length, whereas the ogive was paneled with only 20 panels. 
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The Fully-Submerged Body 

The prolate spheroid was panelized with 192 surface panels, again using 

the criterion that the source density should be within 10 percent of its mean value 

over the dimensions of the panel. A submerged body such as this can also be approx- 

imated by a series of line sources along its centerline (i.e. thin-ship approximation). 

The cost of such a line-source calculation is an order of magnitude less than the 

corresponding surface panel calculation required by the slender-body approach. The 

small differences between the numerical results shown in Figure 9, indicate that 

this is perhaps not a cost-effective application of slender-body theory. However, 

if the body were not a body-of-revolution, then surface panelization might be 

indicated. 

Since Farell and Guven [5] give experimental results which indicate a wave 

resistance coefficient which is significantly above the first-order approximation, 

this would appear to be a situation in which the thin-ship approximation yields 

better agreement with experimental values than does the slender-ship approximation. 

Costs I 

All of these calculations were performed on a VAX 11/780 computer. The 

calculation of the wave resistance at a single Froude number requires approximately 

1 minute of CPU for each 100 triangular panels on the body. At current rates 

(~ $100/hour), a typical calculation might cost $2.50 per Froude number. 

Conclusions i 

It would appear that the slender-ship approximation offers some promise 

for the economical approximation of the wave resistance for some hull forms. We do 

not expect it to be as accurate as some of the more sophisticated numerical approaches, 

but its speed and simplicity can make it a valuable tool in the design process. 

For the two destroyer hulls, this approach led to results which were in 

good agreement with experimental results, although we note that the wave resistance 

is slightly over predicted near the large hump in the curve at high Froude numbers 

(~ 0.45). For the ATHENA, the agreement was not as good, especially near the wave 
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resistance hump (Fn -~0.45). These results, although not as good as those obtained 

by Dawson or Chang [3], did agree reasonably well with experimental values at Froude 

numbers both below and above this Froude number. 

For the Wigley hull, the slender-ship approximation appears to yield 

significantly better agreement with experimentally determined values than were 

obtained by the thin-ship approximation, especially for high Froude numbers. As 

was the case with the ATHENA [3], the slender-ship results were somewhat lower than 

the thin-ship results at all Froude numbers. For the series 60 hull, the reduction 

in predicted wave resistance obtained by using the slender-ship approximation was 

yery  slight and the results did not agree with the experimentally determined 

values to an acceptable degree. The submerged hull was the only case examined thus 

far in which thin-ship results agreed with experiment better than the slender-ship 

results. It was also the only case in which both theories under predicted the wave 

resistance. 

Figure 1. Panelized destroyer hull form. 
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NUMERICAL STUDY OF EIGHT WAVE-RESISTANCE APPROXIMATIONS 

by Francis Noblesse 

David W. Taylor Naval Ship Research and Development Center 

Abstract 

This study presents results of ship wave-resistance calculations, for several 

simple hull forms, based on 8 wave-resistance approximations that are compared 

with one another and with existing experimental data for 2 thin hull forms. 

Introduction 

The wave-resistance calculations for simple hull forms reported in this study 

were performed in preparation for the task of developing a general computer code 

for calculating the wave resistance of an arbitrary ship form on the basis of the 

slender-ship theory presented in Noblesse [1]. More precisely, the present pre- 

liminary calculations were performed for two main purposes.  First, it was neces- 

sary to perform a number of systematic calculations for completing the previous 

numerical study of Chen and Noblesse [2].  Specifically, this previous study con- 

tains a fairly extensive set of calculations, for both sharp- and round-ended hull 

forms, based on the zeroth-order slender-ship approximation r^ ', that is compared 

with the approximations of Michell [3] and Hogner [4], and on the first-order 

slender-ship low-Froude-number approximation rj^p, that is shown to be practically 

identical to the low-speed approximation rj^p advocated by Guevel, Vaussy, and 

Kobus [5], Baba [6], Maruo [7], and Kayo [8]. However, only a preliminary nu- 

merical study of the more interesting and potentially more useful first-order 

slender-ship approximation r^   is included in [2],  Indeed, calculations were 

performed for only one hull form: the Wigley hull.  Furthermore, the nonosdi- 

latory near-field term (t^ in the velocity potential <(> = <|)N "^ 't'w* where ^^  repre- 

sents the wave term, was simply approximated by its zero-Froude-number limit <^^ 

in [2]. The effect of the near-field potential ^^  is evaluated in the present 

numerical study, and results of fairly extensive calculations, for both sharp- 

and round-ended hull forms, are reported.  The second major motivation for the 

present preliminary wave-resistance calculations for simple hull forms was the 

need for studying various numerical aspects of ship wave-resistance calculations 

in the framework of simple mathematically-defined hull forms for which numerical 

inaccuracies can be controlled more effectively than for arbitrary ship forms. 

The need for this preliminary study of numerical aspects of wave-resistance calcu- 

lations stems from the fact that calculations of wave resistance are known to be 
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somewhat "difficult", as is attested by the significant discrepancies that some- 

times occur among sets of numerical results obtained by different investigators 

on the basis of identical or closely-related methods [9]. 

As was mentioned previously, 8 wave-resistance approximations are considered 

in this study.  These wave-resistance approximations correspond to the 8 approxi- 

mations to the velocity potential (j) defined below by Equations (la,b,c,d) and 

(2a,b,c,d).  More precisely, the wave-resistance approximations are given by the 

Havelock integral, as is [1], in which the Kochin free-wave amplitude function is 

determined by using the following approximations to the velocity potential: 

* = 0,     * = (t>N,       ^  = ^% * = <|)N (la,b,c,d) 

* ° *W'    * = *N + *W'   * = C+ *W'    * = 't'N + *W (2a,b,c,d) 
In these equations, the potential <i>  = (jij^ + (j)^^ is the first-order slender-ship 

approximation to the Neumann-Kelvin velocity potential given in [1], specifically 

by Equation (24a).  The potential ^^^  is the wave potential given by Equation (53b) 

in [1], and the potential <^^  corresponds to the nonoscillatory near-field 

potential associated with both the singular term (-1/R) and the near-field term 

N in expression (8) in [1] for the Green function.  The potentials ^  and (KJ*are 

the zero- and infinite-Froude-number limits of the near-field potential (j)^ 

associated with the simple sea-surface boundary conditions d^^/dz  = 0 and ^ = 0 

on the mean sea plane z = 0.  Specifically, the potential ({.° is given by Equation 

(49) in [1], and the potential (^^  is given by the same equation in which the image 

source is replaced by an image sink.  The approximation to the wave resistance, r, 

corresponding to the trivial slender-ship approximation (la) to the velocity 

potential ^  is the zeroth-order slender-ship approximation r^°\ that can be 

regarded as a generalization of the classical wave-resistance approximations of 

Michell [3] and Hogner [4], as is shown in [1]. The wave-resistance approximation 

corresponding to the approximation (() = (|)v, defined by Equation (lb) is the first- 

order slender-ship low-Froude-number approximation r^p that was shown in [2] to 

be practically identical to the Guevel, Baba, Maruo, Kayo low-speed approximation 

Tj^p.  The wave potential <^^  is ignored in the approximations (la,b,c,d); com- 

parison of the wave-resistance curves corresponding to these approximations with 

one another will indicate whether the near-field potential t^,-^  might be neglected 

or approximated by one or the other of the computationally-simpler potentials 

*N °^  'I'N* '^^^ ^^"^^  potential (|)^ is included in the approximations (2a,b,c,d), and 

the effect of this potential can be judged by comparing the wave-resistance curves 
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associated with the approximations (2a,b,c,d) and (la,b,c,d).  The wave-resistance 

approximation corresponding to the approximation (2d) is the first-order slender- 

ship approximation r^ K     The simplified approximation (2b) was used in [2] in 

place of the approximation (2d).  Comparison of these 2 wave-resistance curves, 

and of the curves associated with the approximations (2c) and (2a), will Indicate 

whether a simple approximation to the near-field potential <^^  might be used.  The 

wave-resistance curves associated with the above-defined approximations to the 

velocity potential are compared with one another for 3 simple sharp- and round- 

ended hull forms, and with existing experimental data for 2 thin sharp-ended 

hull forms in the following 2 sections. 

Systematic Wave-Resistance Calculations for Three Simple Strut-Like Hull Forms 

Calculations have been performed for 3 simple strut-like hull forms having 

constant draft and rectangular framellnes, and beam/length and draft/length ratios 

equal to B/L = 0.15 and D/L = 0.075.  The 3 hull forms are a sharp-ended "parabolic 

strut", a round-ended "elliptic strut", and a "parabolic/elliptic strut" having a 

sharp bow (or stern) and a round stern (or bow); for the parabolic/elliptic strut, 

results are presented for both cases when the sharp end is taken as the bow and as 

the stern (hull moving forward and backward). More precisely, the waterlines of 

the parabolic and elliptic struts are defined by the equations y = ±0.075(l-4x^) 

and y =» ±0.075(l-4x ) '2 where -1/2 < x < I/2, respectively, and the waterlines of the 

parabolic/elliptic strut are defined by the equations y = ±0.075(l-2x)(l-4a+2x)/ 

(l-2a)2 for a < X < I/2 and y = ±0.075[ l-4(x-a)2/(l+2a)2] ^^2 fo^ -i/^  < x < a, where a 

is taken as a - 2 '^-3/2 -  -0.086 so that there is no discontinuity in curvature at 

the junction between the parabolic and elliptic arcs at x = a.  The results of 

wave-resistance calculations are depicted in the form of wave-resistance curves 

showing the nondimensional wave resistance r = R/pU L (where p = density of 

water, U = ship speed, L = ship length) divided by the square of the Froude number 

F = U/(gL) ^, that is r/F"^, as a function of 1/F^ for 1 < 1/F^ < 31, which corre- 

sponds to the Froude-number range 1 > F > 0.18. The wave-resistance curves were 

drawn by using cubic-spline fits of the numerical results obtained for 18, 26, and 

17 values of the Froude number, in the range 1 < 1/F^ < 32, for the parabolic, 

elliptic, and parabolic/elliptic struts, respectively.  The numerical results are 

listed in Tables 1,2, and 3. 

Figures la and lb show the zeroth-order approximation T^^\   the low-speed 

approximation r^^p, and the first-order approximation r^^^ corresponding to the 
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approximations <}) = 0, <^,   and ^^ + (^^,   respectively, for the parabolic and 

elliptic struts. These figures show that differences between the curves corre- 

sponding to (J) •" 0 and <j) = 4ivi, while appreciable, are much less important than 

differences between any one of these 2 curves and the curve (J) = <J)jj + <t>y  In 

particular, there are no appreciable phase shifts between the curves iji = 0 and 

<t> -  <t>M> the curve <|) = 4)M lying mostly below, and above, the zeroth approximation 

(J) = 0 for the parabolic, and elliptic, strut.  Differences between these 2 curves, 

on the one hand, and the curve ^-^  + (J)^, on the other hand, are important, including 

appreciable phase shifts.  In particular. Fig. la for the parabolic strut shows 

that the curve (])»,+ <J)TT is significantly lower than the curves (j) = 0 and <J)jj for 

small values of F, and the amplitudes of its oscillations, which are quickly damped 

as F ->■ 0, are greatly reduced.  Fig. lb for the elliptic strut shows even more 

striking differences, especially for large values of F for which the curve :^-^ +  (J)^ 

is considerably higher than the curves cj) = 0 and i^^.     The curve <|)^ + ({>y also has an 

additional oscillation in the vicinity of 1/F =7 that is not present for the 

other 2 curves. 

The above-noted large differences between the curve (JJ^T + (^^  and the curves (fi = 

0 and ij)M are mostly caused by the wave potential i^^,   rather than the near-field 

potential I))VT, as can be seen from Figs. 2a and 2b showing the wave-resistance cur- 

ves associated with the approximations 4) = 0, 41 = (j)jg, and <j) = <t>y for the parabolic 

and elliptic struts, respectively.  Differences between the curves (J) = 0 and <l>-^  can 

be seen to be relatively small.  As a matter of fact, comparison of Figs, la and 

2a, and of Figs, lb and 2b, show that differences between the curves <}) = (t)jj and (p  = 

0 are smaller than differences between the curves 41=4)^^ and (^ = 0.     The curves 

corresponding to the approximation (j) = (|)TJ, on the other hand, are quite different 

from the curves <j) = 0 and (J)vj, and clearly are similar to - although appreciably 

higher than - the curves (^^ + <^^  in Figs, la and lb.  The wave potential ^^  thus 

has a very pronounced effect, and indeed is relatively more important than the 

near-field potential (Jiv,.  Nevertheless, the near-field potential (^^  also has an 

appreciable, although less drastic, effect.  More precisely, comparison of Figs. 

la and 2a, and of Figs, lb and 2b, show appreciable differences between the curves 

(J)j^ + ())rj and (j)y, and it is interesting that these differences are considerably 

larger than those that can be observed in Figs. 2a and 2b between the curves (J) = 4>N 

and ((1 =■ 0. 

Figures 3a and 3b show the wave-resistance curves corresponding to the 

182 



o  oo 
approximations ij) = (^^,   (^^,   and (^-^  for the parabolic and elliptic struts, re- 

a> 
spectively.  The infinite-Froude-number-limit curve (J)», can be seen to provide a 

fairly good approximation to the curve ^-^  for values of l/F"^ less than about 14, 

that is for F greater than about 0.27.  For smaller values of F, discrepancies 
oo 

between the curves (^^  and <^^  increase, and the curve ^-^  becomes more nearly in 

phase with and closer to the zero-Froude-number-limit curve <pi,. However, differ- 

ences between the curves <^^ and <^^ are appreciable, especially in Fig. 3b for the 

elliptic strut, for the Froude-number range considered in Figs. 3a and 3b. 

Figures 4a and 4b show the wave-resistance curves associated with the 
O        00 

approximations <}> = (ji^j + <t)y, (})j^ + 4>y, and <^^ + ^^  for the parabolic and elliptic 

struts, respectively.  Differences among the curves <|)° + i^^,   i^^ + ,^^,   and (^^ +  (j)„ 

are qualitatively similar to, although generally larger than, the previously-noted 

differences among the curves ^^,   i^^,   and <i,^.     In particular, the curve (^ +  <j)„ is 

fairly close to the curve i^^ + (^^,   especially for the elliptic strut, for values of 

1/F  less than about 14, that is for F greater than about 0.27.  For smaller values 

of F, a significant difference in phase develops between these 2 curves, notably 

for the parabolic strut.  Although there are only minor differences in phase bet- 

ween the curves ijjj^ + <J)^^ and i^^ +  (jj^^, the former curve is well above the latter and 

discrepancies are fairly large, especially for the elliptic strut.  Comparison of 

Figs. 4a and 3a, and of Figs. 4b and 3b, clearly demonstrate the very-large effect 

of the wave potential i^,^  that was already noted in Figs. 2a and 2b. 

Figure 5 shows 3 wave-resistance approximations, namely the zeroth-order 

approximation r^ '', the low-speed approximation T^^,   and the first-order approxi- 

mation r^  corresponding to the approximations (j) =0, (()°, and <^^  + ,^^,   respec- 

tively, for the previously-defined parabolic/elliptic strut, in both cases when 

the sharp end is taken as the bow and as the stern (hull moving forward and 

backward).  The approximations ({. = 0 and cji^j yield identical wave-resistance curves 

for both cases when the hull is moving forward and backward, and differences 

between these 2 approximations are relatively minor.  Specifically, the curve 
0 

^^  lies above the curve <}) = 0, without apparent difference of phase.  The approxi- 

mation ((ijj + (J,^, on the other hand, yields different wave-resistance curves for 

the cases when the hull moves forward and backward.  These differences stem from 

the wave potential ^^,   that is different in the forward- and backward-motion 

cases, unlike the near-field potential (^^  and its zero- and infinite-Froude- 

number limits <^^  and <^^  that merely undergo a change in sign.  Figure 5 shows 
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that differences between the curves (^-^ +  (ji^ for the forward- and backward-motion 

cases and between any one of these 2 curves and the curves (j) = 0 and i^^  are 

important, including notable phase shifts.  In particular, the curve ^-^ +  (j)y 

for the round-bow/sharp-stern strut lies much above the other 3 curves for large 

values of F, and the oscillations of the curve (jjvr + (|)y for the sharp-bow/round- 

stern strut are greatly reduced for small values of F, especially in the range 

19 < 1/F^ < 31 (0.23 > F > 0.18) where the curve is almost flat. 

Comparison of Theoretical and Experimental Wave-Resistance Values for the Sharma 

Strut and the Wigley Hull 

Experimental values of wave resistance have been determined by Sharma [10] 

for a sharp-ended parabolic strut of the kind considered in the previous section, 

with beam/length and draft/length ratios equal to 0.05 and 0.15, respectively. 

Experiments were performed under conditions when neither sinkage nor trim of the 

model was allowed.  Both experimental values determined by analysis of measured 

wave profiles and use of Froude's method of subtracting an estimated viscous 

resistance from the measured total resistance are given in [10]. These experi- 

mental values are indicated in Fig. 6 together with the zeroth-order approxi- 

mation r^  ,the low^speed approximation r^p, and the first-order approximation 

r^ ^ corresponding to the approximations (j) = 0, i^^,   and (j)^, + (j)„, respectively. 
2 

These 3 theoretical wave-resistance curves are depicted for 1 < 1/F < 25, 

corresponding to 1 > F > 0.2.  The curves were plotted by using cubic-spline fits 

of 14 numerical results obtained for 1 < 1/F < 26; these numerical results are 

listed in Table 4.  Figure 6, and all subsequent figures in this section, repre- 
2 2 

sent the nondimensional resistance r E R/pU L , which is proportional to the wave- 
2 

resistance coefficient C^ = R/l/2pU S where S = wetted-hull surface, rather than 
2 

r/F  that was represented in Figs. 1 through 5 in the previous section.  Differ- 
0 

ences among the approximations (j) = 0, ^^,   and (j)jj + (j)y are very-much smaller for 

the extremely thin (B/L = 0.05) and deep (D/L = 0.15) Sharma strut considered in 

Fig. 6 than for the thicker (B/L = 0.15) and shallower (D/L = 0.075) strut con- 

sidered in Fig. la.  As a matter of fact, the first-order approximation r^ ' and 
(1) 

the low-speed approximation r^p are not noticeably different from the zeroth- 

order approximation r^  , which is practically identical to the Michell thin-ship 

approximation (not shown in Fig. 6), for the thin and deep Sharma strut. 

Furthermore, Fig. 6 shows that these theoretical approximations are in excellent 

agreement with both sets of experimental data points for values of 1/F less than 
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about 8, that is for F > 0.35, and lie between the 2 sets of experimental data for 

smaller values of the Froude number. 

Figure 7 shows the numerical results obtained in Chen and Noblesse [2] for 

the Wigley hull, that has parabolic waterlines and framelines, beam/length and 

draft/length ratios equal to 0.1 and 0.0625, respectively, and more precisely, is 

defined by the equation y = ±0.05(l-4x^)(l-256z^) where -0.5 < x < 0.5 and 0 > 

z >  -0.0625. Four theoretical wave-resistance curves are depicted in Fig. 7. 

These are the Michell thin-ship approximation, and the wave-resistance aproxi- 

mations corresponding to the velocity-potential approximations <{) = 0, cj)^, and 

^U  "*" *^W  "^^^ wave-resistance curves were plotted by using cubic-spline fits of 

31 numerical results obtained for 2 < 1/F < 32; these numerical results are listed 

in Table 5.  Also shown in Fig. 7 are the ranges of variation of experimental data, 

for 10 values of the Froude number, obtained in the manner that is explained in 

Chen and Noblesse [11].  Briefly, these experimental data consist of 11 sets of 

data, determined by using both wave analysis and the usual Froude method, for the 

Wigley hull in unrestrained conditions (hull free to assume its natural sinkage 

and trim), to which theoretical corrections for sinkage- and-trim effects, based 

on 4 sets of theoretical results, were applied.  A detailed comparison of the 

theoretical results and experimental data represented in Fig. 7 is given in [2]. 

The most interesting feature of the results depicted in Fig. 7 resides in the 

fairly-large phase shift between the curve <j)jj + i^^  and the other 3 wave-resistance 

curves, resulting in improved agreement with the experimental data. 

No new numerical calculations were performed for the Wigley hull form in the 

framework of the present numerical study, that is limited to strut-like hull forms 

having constant drafts and rectangular framelines.  However, calculations have been 

performed for a parabolic strut having beam/length ratio equal to that of the 

Wigley hull, namely B/L = 0.1, and draft/length ratio equal to 0.04, so that this 

strut, with rectangular framelines, has approximately the same cross-sectional area 

as the Wigley hull, with parabolic framelines and draft/length ratio equal to 

0.0625. The results of these calculations are listed in Table 6 and depicted in 

Fig. 8.  Specifically, the wave-resistance curves corresponding to the approxi- 
O   O 9 

mations 4> =' 0. ^N» '*'N "^ 'f'W' ^"^ *N "*" '''W ^^^ shown for 2 < l/¥^  < 32.  The 4 wave- 

resistance curves shown in Fig. 8, and differences among them, are qualitatively 

much alike those considered previously in connection with Fig. 7 and Figs, la 

and 4a.  In particular, the curves (^^ + ^^  and <^.^ + <^^  are clearly out of phase 
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with the curves (Ji = 0 and 4>jj, due to the wave potential (|)y as was mentioned pre- 

viously.  Both Figs. 8 and 4a also show that the oscillations of the curves (^-^  + 

<|)TJ and <j)j^ + (firj are roughly in phase.  This result and the close similarity between 

the comparable wave-resistance curves represented in Figs. 8 and 7 may be used to 

determine a rough estimate of the wave-resistance curve corresponding to the 

approximation ijij^ + ({"u ^°^  the Wigley hull.  Specifically, if r^ ^   and rg are 

the wave-resistance approximations associated with the approximations (J)JT + (J)TJ 

and <{)vj + (fij. respectively, a rough estimate of r^ ' for the Wigley hull can be 

determined by assuming that the ratio r^  '^0 ^^^'^^^ ^^^  same value for the Wigley 

hull and the related strut considered in Fig. 8. 

The values of the first-order approximation r^   for the Wigley hull estimated 

in the foregoing manner are listed in Table 5, and the corresponding curve is 

depicted, together with the Michell wave-resistance curve and experimental data, 

in Figs. 9a,b,c. More precisely, the experimental data points shown in Figs. 9a, 

b,c are the data obtained recently at the Ship Research Institute (SRI), the 

University of Tokyo (UT), and Yokohama National University (YNU) in Japan [12] and 

at the University of Iowa (Ul) in the USA [13] for the Wigley hull under conditions 

when neither sinkage nor trim was allowed.  Experimental data obtained by using 

3 different experimental techniques are indicated in Figs. 9a,b,c.  Specifically, 

Fig. 9a shows the experimental data obtained at SRI and at UT by using the method 

of wave-pattern analysis; Fig. 9b presents the experimental results obtained by 

Sangseon Ju at UI by subtracting from the measured total resistance the viscous 

resistance determined experimentally by using the wake-survey method; finally. Fig. 

9c shows the experimental values of residuary resistance obtained at SRI, UT, YNU, 

and UI by using the usual Froude method. The wave-pattern-analysis results of SRI 

and UT shown in Fig. 9a are in good agreement with one another for the 4 values 

of the Froude number for which there are experimental data from both SRI and UT, 
(I) j 

and are fairly close to the first-order approximation r^ ^   for values of 1/F 

smaller than 14, that is for F > 0.27. The viscous-wake-analysis results of UI 

depicted in Fig. 9b also are in fairly good agreement with the first-order approxi- 

mation r^  for F > 0.27, but are much less oscillatory than r^ ' for smaller 

values of F. Comparison of Figs. 9a and 9b indicates that the UI wake-survey 

results and the wave-analysis results of SRI and UT are in fairly good agreement 

with one another.  There are notable differences among the 4 sets of residuary 

resistance shown in Fig. 9c for values of 1/F greater than about 14, that is for 
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F smaller than about 0.27.  Furthermore, differences between the residuary-resis- 

tance values of Fig. 9c and both the wave-analysis data of Fig. 9a and the first- 

order approximation r^ '^ are appreciable for values of l/F  smaller than about 9, 

that is for F greater than about 0.33.  It will be interesting to compare the 

experimental data shown in Figs. 9a,b,c with a more accurate evaluation of the 

first-order approximation r  , including the nonlinear terms in the sea-surface 
(2) 

boundary condition in particular, and with the second-order approximation r -^. 

Conclusions 

.  Differences between the first- and zeroth-order slender-ship approxima- 

tions r^ ' and r '^ were found to be important for all the hull forms considered 

in this study, except the extremely thin and deep Sharma strut for which the terms 

involving the velocity potential in the expression for the Kochin free-wave 

amplitude function thus appear to have no appreciable effect. 

.  The numerical results for the Wigley hull obtained previously in [2] had 

shown that the wave potential (Jir, has a very pronounced effect upon the wave 

resistance, causing a large phase shift in particular. This finding is confirmed 

by the more extensive numerical results obtained in the present study.  The low- 

speed approximation advocated by Guevel et al. [5], Baba [6], Maruo [7], and 

Kayo [8], in which the wave potential is neglected and the potential is approxi- 

mated by the zero-Froude-number potential, therefore does not seem justified, 

except possibly for extremely small values of the Froude number, as was previously 

concluded in [1,2]. 

The nonosclllatory near-field potential cj)^ has less drastic effects upon 

the wave resistance than the wave potential (|)y.  In particular, (^-^  affects the 

phase of the wave-resistance curve to a lesser degree than (J),,.  Nevertheless, tj)^ 

has appreciable effects upon the wave resistance, and cannot simply be neglected. 

Neither can (^-^  be approximated by its zero-Froude-number limit <\)y.,   except perhaps 

for very small values of the Froude number. However, use of the infinite-Froude- 
00 

number approximation (^^  might be justified for values of F greater than about 

0.27.  This finding and the relatively-small importance of ^^  by comparison with 

"t'w suggest that it may be sufficient, for practical calculations, to use the 

following simple algebraic approximation for the near-field term N in expression 

(8) in [1] for the Green function: 

N = l/r'-[2/(F2+r')][l-F2(z+c)/(F2+r')(r'+|x-c|)] 

where r'is the distance between the field point (x,y,z) and the mean-sea-surface 
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mirror image (C,n,-C) of the singular point (5,n,?).  The foregoing simple 

algebraic approximation has the property that it yields the first 2 terms in the 

ascending series [14] and in the asymptotic expansion [15] of N, and thus provides 

a good approximation to N for both small and large values of r'/F .  A substantial 

part of the computing time required for evaluating the first-order approximation 

r   is spent for calculating the near-field potential (|)v,, so that a significant 

reduction in computing time can be achieved by using the foregoing algebraic 

approximation to the near-field term N in the Green function. 

.  The first-order wave-resistance approximation r^ "^ appears to be in fairly- 

good agreement with experimental data for the Sharma strut and the Wigley hull for 

values of the Froude number greater than about 0.27. However, numerical results 

must obviously be obtained and compared with experimental data for other hull 

forms.  This task will be performed in the near future, after a computer code for 

arbitrary ship forms is developed. 

Finally, 2 important non-conclusions ought to be mentioned.  (1)  The 

nonlinear terms in the sea-surface condition appear in the form of a sea-surface 

integral in the expression for the Kochin free-wave amplitude function [1].  This 

sea-surface integral was neglected for simplicity in the calculations reported in 

this study, but should be evaluated for assessing the effects of free-surface 

nonlinearities.  (ii) It would also be necessary to evaluate the second-order 
(2) (2) 

slender-ship approximation r^ ' for verifying if r^ '^ does not differ significantly 

from r^ "^ as is suggested, but by no means firmly established, by the restricted 

proof of convergence given in Noblesse [16] .  It is hoped that these 2 important 

tasks can be performed in the not-too-distant future. 
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TABLE  3  - Values   of   the  Nondimensional  Wave  Resistance   r "  R/pU-L^ 
for   the Parabolic/Elliptic  Strut 

1/F2 4,-0 .,0 

*N + ♦w 

Sharp Round 

bow bow 

1 .894E-02 .906E-02 .932E-02 .384E-01 

2.5 .293E-02 .326E-02 .376E-02 .103E-01 

4 .213E-02 .264E-02 .265E-02 .619E-02 

6 .154E-02 .200E-02 .145E-02 .345E-02 

8 .784E-03 .104E-02 .918E-03 .200E-02 

10 .763E-03 .996E-03 .lOOE-02 .180E-02 

12 .776E-03 .105E-02 .689E-03 .131E-02 

14 .433E-03 .618E-03 .536E-03 .781E-03 

16 .439E-03 .584E-03 .577E-03 .841E-03 

18 .520E-03 .712E-03 .487E-03 .734E-03 

20 .309E-03 .459E-03 .382E-03 .319E-03 

22 .280E-03 .379E-03 .368E-03 .402E-03 

24 .366E-03 .488E-03 .346E-03 .458E-03 

26 .241E-03 .351E-03 .310E-03 .251E-03 

28 .192E-03 .263E-03 ■.275E-03 .228E-03 

30 .265E-03 .345E-03 .244E-03 .262E-03 

32 .195E-03 .277E-03 .237E-03 .206E-03 
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TABLE  4 - Values  of   the Nondlmensional Wave Resistance   r " R/pU^L^ 
for   the   Sharma  Strut 

1/F2 (}i - 0 ^0 ^N + *W 

1 .118E-03 .807E-04 .150E-03 

2.5 .409E-03 .352E-03 .444E-03 

4 .548E-03 .526E-03 .566E-03 

6 .321E-03 .328E-03 .319E-03 

8 .808E-04 .762E-04 .768E-04 

10 .125E-03 .108E-03 .105E-03 

12 .134E-03 .127E-03 .120E-03 

14 .488E-04 .465E-04 .450E-04 

16 .495E-04 .416E-04 .369E-04 

18 .674E-04 .613E-04 .553E-04 

20 .322E-04 .301E-04 .285E-04 

22 .249E-04 .208E-04 .172E-04 

24 .382E-04 .337E-04 .289E-04 

26 .227E-04 .208E-04 .190E-04 
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TABLE 5 - Values of the Nondimensional Wave Resistance r - R/pU^L^ 
for the Wigley Hull 

1/F2 Michell (}) - 0 
0 0 

*N + ^V 

2 .232E-03 .974E-04 .139E-03 .261E-03 .221E-03 

3 .304E-03 .188E-03 .190E-03 .277E-03 .241E-03 

A .335E-03 .243E-03 .214E-03 .269E-03 .226E-03 

5 .304E-03 .240E-03 .224E-03 .221E-03 .173E-03 

6 .224E-03 .187E-03 .180E-03 .155E-83 .114E-03 

7 .139E-03 .119E-03 .113E-03 .109E-03 .798E-04 

8 .942E-04 .770E-04 .633E-04 .103E-03 .831E-04 

9 .lOOE-03 .778E-03 .571E-04 .120E-03 .108E-03 

10 .134E-03 .106E-03 .843E-04 .130E-03 .122E-03 

11 .158E-03 .128E-03 .113E-03 .118E-03 .109E-03 

12 .145E-03 .122E-03 .H5E-03 .895E-04 .784E-04 

13 .108E-03 .925E-04 .897E-04 .691E-04 .575E-04 

14 .725E-04 .627E-04 .577E-04 .686E-04 .579E-04 

15 .628E-04 .536E-04 .427E-04 .807E-04 .754E-04 

16 .786E-04 .667E-04 .515E-04 .891E-04 .879E-04 

17 .984E-04 .841E-04 .703E-04 .809E-04 .773E-04 

18 .102E-03 .880E-04 .792E-04 .616E-04 .546E-04 
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TABLE 5 - Continued 

1/F2 Michell ^  '  0 *N + *W (J)N + ,j)y 

19 .835E-04 .732E-04 .693E-04 .456E-04 .382E-04 

20 .590E-04 .521E-04 .488E-04 .427E-04 .367E-04 

21 .460E-04 .406E-04 .341E-04 .516E-04 .488E-04 

22 .513E-04 .450E-04 .348E-04 .598E-04 .598E-04 

23 .658E-04 .578E-04 .463E-04 .582E-04 .575E-04 

24 .732E-04 .647E-04 .557E-04 .448E-04 .418E-04 

25 .656E-04 .584E-04 .533E-04 .326E-04 .281E-04 

26 .489E-04 .438E-04 .408E-04 .289E-04 .242E-04 

27 .363E-04 .325E-04 .284E-04 .337E-04 .304E-04 

28 .363E-04 .324E-04 .253E-04 .405E-04 .396E-04 

29 .458E-04 .408E-04 .318E-04 .411E-04 .408E-04 

30 .538E-04 .481E-04 .399E-04 .338E-04 .327E-04 

31 .519E-04 .467E-04 .411E-04 .248E-04 .229E-04 

32 .412E-04 .372E-04 .339E-04 .208E-04 .180E-04 
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TABLE  6 - Values  of   the  Nondiraensional Wave  Resistance  r - R/p\]-L^ 
for   the  Wigley  Strut 

1/F2 (|> = 0 ♦N 
0 

*N + *W 

1 .150E-04 .977E-04 .985E-04 .379E-04 

2.5 .140E-03 .134E-03 .221E-03 .193E-03 

4 .234E-03 .223E-03 .291E-03 .244E-03 

6 .184E-03 .194E-03 .195E-03 .143E-03 

8 .789E-04 .758E-04 .lllE-03 .896E-04 

10 .108E-03 .884E-04 .124E-03 .116E-03 

12 .124E-03 .116E-03 .979E-04 .858E-04 

14 .652E-04 .611E-04 .699E-04 .590E-04 

16 .694E-04 .552E-04 .799E-04 .788E-04 

18 .913E-04 .805E-04 .632E-04 .560E-04 

20 .547E-04 .501E-04 .456E-04 .392E-04 

22 .478E-04 .375E-04 .524E-04 .524E-04 

24 .682E-04 .572E-04 .445E-04 .415E-04 

26 .465E-04 .412E-04 .331E-04 .277E-04 

28 .348E-04 .274E-04 .344E-04 .336E-04 

30 .511E-04 .415E-04 .316E-04 .306E-04 

32 .396E-04 .340E-04 .258E-04 .223E-04 
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LINEAR AND NON-LINEAR CALCULATIONS 

FOR THE WAVE-RESISTANCE OF SUBMERGED BODIES 

by M. LENOIR, J. CAHOUET, C. GUTTMANN 

E.N.S.T.A. - Groupe Hydrodynamique Navale - 
Centre de I'Yvette - Chemin de la Huniere - 91120 PALAISEAU  (France) 

I. INTRODUCTION 

The computation of the wave-resistance of ships, is one of the most chal- 
lenging problem in the field of naval hydrodynamics. The first trouble is related 
to the turbulent character of the flow, whose Reynolds number is high. Only few 
attempts have been made in this direction, and from now on we shall consider the 
fluid as perfect and the flow as irrotationnal. 

Other difficulties are more specific and concern the boundaries of the 
fluid domain, which is unbounded and unknown, for the location of the free surface 
is one of the very unknowns of the problem. The purpose of the second part of this 
paper is to exhibit an algorithm for the solution of such a problem. 

An other procedure consists in linearizing the free-surface conditions ; 
one is thus led to the so-called "Neumann-Kelvin problem" which involves the Laplace 
equation together with a linearized free-surface condition with a second-order tan- 
gential derivative. This highly unusual feature makes the consideration of surface- 
piercing bodies specially difficult. 

Finally, one must mention that the problem itself is ill-conditioned, for 
the quantity of interest is the wave-resistance, i.e. the integral of the pressure 
on the body. The wave-resistance is small as compared with other quantities, such 
as the velocity potential and the free-surface elevation ; it is thus difficult to 
compute it accurately. 

In the sequel, we shall only deal with some of these difficulties. We con- 
sider only the case of a submerged body, for which two methods are presented. In 
the first part we show some results related to the solution of the 3-D Neumann-Kel- 
vin problem ; the method of solution is the coupling between Finite Elements and 
Integral Representation (F.E.I.R.) devised by JAtll and LENOIR [1]. The high order 
of approximation allows good results with only few degrees of freedom. In the se- 
cond part, we exhibit a procedure for the solution of the non-linear 2-D free-sur- 
face problem. We use a combination of BAI's [2] localized finite element method, 
which accounts for the behaviour of the solution at infinity, and of a fixed point 
algorithmfor seeking the location of the free surface. We need only small calcula- 
tion domains and few iterations for obtaining results which are significantly diffe- 
rent to those deriving from the linearized theory. 
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II. NUMERICAL SOLUTION OF THE 3-D NEUMANN-KELVIN PROBLEM, FOR A SUBMERGED BODY 

This situation is presently one of the best known, especially concerning 
the conditions at infinity, which are properly taken into account by a Green's 
function of the Laplacian satisfying the linearized free surface condition and the 
upstream decay condition. The classical singularity distribution method leads howe- 
ver to poor accurary, for it is limited to low-order approximations ; the purpose 
of the F.E.I.R. coupling method is precisely to remove this drawback. 

The problem under consideration 

The mean position of the free surface is denoted by FS = {Mjz  =0}, r is 
the surface of the body and Q.  the linearized fluid domain ; the depth is assumed 
infinite. The body is fixed in the coordinate system and the components of the in- 
coming velocity are following : (-V  0, 0). 

FS 

< 

rj" 
-»■ a^ 

'00 

Figure 1 

By (j)  = -V X, we denote the meaning  velocity potential, and by cf) the w 
perturbation potential, which satisfies 

(h 

(c ) 

A()) = 0 m J], 

|^+k^|i= 0 onF^S, 
dX     o 3z 

V 

^ = -V (n, 1 ) on r, and 
9n    «>    X     ' 

((), -r-^ -> 0 when x -> +o° ; (f), --^ -^ 0 when z -> -«=, 
oX oZ 

-t 
where i  denotes the unit vector along the ox axis, and where k = e/V  , and g is 

X    . . o °° 
the acceleration of gravity. 
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A brief description of the F.E.I.R. coupling method 

Just as in the singularity distribution method, our main tool is a Green's 
function Gj^(P) of problem (P) , satisfying 

A G^(P) = 6,, in Ri, 
p M      M 

^G^m 3G^(P) 
  + k   = 0 on FS, and 

2     o 9x 3z 

the decay conditions (C ) 

One can prove in fact, see GUTTMANN [3], that this problem has one and 
only solution in the space 5" (Ri) of tempered distributions. This solution is known, 
and several analytical expressions can^be found in Noblesse [4]. As a consequence, 
GUTTMANN [3], shows that any solution (j) of ^ satisfies the following integral repre- 
sentation formula : 

(I.R.)  <^(M) ^*(P) 9|- S^P) - I^^P^S^^^^'^^P' ^ ^ ^ • 

Let's now draw a fictitious boundary Z around the body, which does not 
intersect r. Relation (I.R.) leads us to a boundary condition along I  and makes 
<!>  = ^ho^   ^  solution of problem (P) , set in the bounded domain n   : 

(P) 

0 in n, 

8 A    ^, --s-i-j- . 
-r— = -V (n 1 ) on r, and 
dn    °°  ' X     ' 

.(M) = I {^(P) ~-G^i?)   .  VjnlI^)(P)G^^(P)}dSp 

FS 

n 
Figure 2 
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V 
Conversely, assuming that (P) is well-posed, one can prove, see LENOIR L5J, 

that (P) is well-posed and that its solution is nothing that the restriction of 
$ to f^. 

The variational formulation of problem (P) is then approximated via finite 
elements. It is worth noticing that the conditions at infinity and on the free sur- 
face do not appear explicitely and that the location of E is essentially arbitrary ; 
one can thus restrict U  to one or two layers of elements around the body. The most 
important feature of this method is that no integral involves a singular kernel, 
for M and P belong respectively to E and T,  which do not intersect. The usual tech- 
nics of finite elements procedures, such as high order isoparametric elements and 
numerical integration, are thus available and lead to good accuracy with restricted 
number of unknowns. 

An analytical formula for the Green's function 

A detailed analytical study of the Green's function G (P) is available in 
EUVRARD [6], from which we extract the following set of formulas : 

Gj^(P) = D(M,P) + (|)p(M,P) + <^j^(M,P), 

where <i}„  is referred to as the far-field and *„ as the near-field. 
F N 

V 
where M' is symmetrical to M' with respect to FS. 

Put then X = (X - y/k^, Y = (Y  - Yj^)/k^, and Z = (Z  + Z^)/k^ ; 
we have 

(J)-,(M,P) = 0 if X < 0, and otherwise 
r 

+" Zm^(u) 
^   /»/ TIN AT 1       f       -2iTTuiY|   m(u)      .    ,^ m(u). 2 , 
<^p(M,P)   =   -/2  k^   J     e '    '   1(10   '^""^^ 7f~^   ^ ^""^ 

—oo 

where   l{n)   =   (1   +   IBTT^U^)^'^^  and m(u)   =   (1   +   £(u))^'^,   and 
k 7r/2 

sin  e{e^*'®''   Ei(a(9))   +  e^*"^^   Ei(b(e))}de,  where 

a(e)   =  sine   {ilxl   + Y  cos   6  + Z   sin  6},   and b(6)   =  sine   {ilxl   - Y cos   6  + Z  sin  G}, 
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Numerical calculation of the Green's function i 

The estimation of integral (I.R.) requires numerous calculations of 
Gj^(P) : one for each pair (M,P), where M and P run respectively over the respective 
sets of degrees of freedom of Z and r. It is thus of prime interest to devise effi- 
cient approximation procedures for G (P). 

Our procedure for the calculation of the near-field potential is rather 
crude, and we believe it could be substantially improved : the integrand is appro- 
ximated by  splines of order 2 and degree 3, with equidistant interpolation abscis- 
sas, the number of which varies from 15 to 40 according to the values of X, Y and 
Z. 

The calculation of the far field potential is more sophisticated and 
relies on WEBER's [7] method, for the calculation of Fourier transforms. We put 

+ 00 

(M, P) = 
— 2 1 7TU Y 

e    ' ' h(u, X, Z)du, 

-Y/2 
and develop (})^ on the basis of the }p   (Y)   =  e L (Y), n > 0, where L  is the 
Laguerre polynomial of order n : ^ ^ 

<j) (M,P) =  Z C^ (X, Z) ^   (h. 
^       n>0 '^        ^ ^ 

T 
Coefficients C are given by the following formula : \ 

(* 2 7T 

^n^^' ') = 4^1 J  ^1 ^ i^°tg i) h (- ^ cotg f , X, Z) e"^^^ de, 

0 

and are calculated via Fast Fourier Transform. Parameter T is choosen in such a way 
to reduce the number of coefficients c'^ significantly different from 0. 

Some results 

We present here some preliminary results. The case under consideration is 
that of a submerged ellipsoid of respective big and small axis 2a and 2b. The depth 
of the center, denoted by H, is equal to 2b. 

The meshes are made up of one layer of second order prismatic and cubic 
finite elements ; the symmetry of the problem with respect to the (x, z) plane is 
taken into account. The accuracy of the method has been checked in the case where 
the exact solution is nothing then the Green's function G (P ) associated with a 
point P  inside the body. ° o -^ 

The tables show the variation of the non-dimensional wave-resistance R^ 
versus the Froude number F„, with "■ 

R 
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F„ =   , and R^ 
R w 

/gH TTpgb^ 

where R is the horizontal component of the resulting force on the body, and p the 
w    ,      , 

mass per unit fluid volume. 

Comparisons have been carried out with the numerical results of DELHOMMEAU 
[8] and with the (semi-)analytical results of HAVELOCK [9]. 

The first table is devoted to the case of a sphere (a = b = 1), and the 
second to that of an ellipsoid (a = 2.5, b = 1). The agreement with Havelock's 
results is quite satisfactory for the sphere ; the (small) discrepancy which can be 
noticed on the second table is presently under consideration : does it follow from 
a lack of accuracy in Havelock's result or in the calculation of the Green's func- 
tion ? 

III. NUMERICAL SOLUTION OF THE 2-D NON LINEAR FREE-SUREACE PROBLEM, FOR A BUMP 
ON THE BOTTOM 

Within the scope of the linear theory, some trouble occurs when the obsta- 
cle runs through the free surface. The computation of the integral representation 
itself is not an easy matter, but primarily the 2-D results of SUZUKI [10] and 
LENOIR [5] show the existence of values of the Froude number which make the problem 
ill-posed. We consider the linearization as faulty in the vicinity of the water- 
line ; we are thus led to the solution of the non-linear free surface problem. 

The first stage of this work will be described below : it is related to 
the case of a 2-D immersed body ; for the sake of simplicity we shall restrict 
ourselves to a bump on the bottom. 

The problem 

We study the perturbation of an uniform free-surface flow by a fixed bump 
on the bottom. The fluid is assumed perfect and incompressible, the flow irrotatio- 
nal and stationary. The flow depends on the shape of the body, and the Froude num- 
ber F = V^(gH)~^' , where V and H denote respectively the speed and the depth at 
infinity, and g the acceleration of gravity. The flow is accounted for as supercri- 
tical if F > 1, and subcritical otherwise. 

V 
The fluid domain is denoted by Q ; the respective equations of the free- 

surface FS and of the bottom B are given by y = 1 + ri, and y = f, where f is com- 
pactly supported. The non-dimensional equations satisfied by the perturbation stream- 
function ^  and the perturbation ri of the free-surface elevation are following : 
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(1) Af =    0  in n, 

(2) 4) +  f =    0  on ^, 

(3) 4; +  n =    0,   and 

(4) 2(F~^ n  +   3i|j/3y)   +   [ViJ;!^   = 0  on FS, 

(5) ^ and   |Vi|;|   are bounded and vanish upstream. 

(h 

upstream downstream 

Q ^ 

ce 

Figure 3 

The numerical methods which are accounted for in the literature faced two 
major difficulties. On the one hand, the solution depends highly on the size of the 
computation domain (HESS [11]), it is the result of a lack of accuracy regarding the 
conditions at infinity ; on the other hand, the usual fixed point algorithms, are 
only satisfactory in the supercritical case (see LIU [12], VON KERCZEK and SALVESEN 
[13], KORVING and HERMANS [14]). 

The essential features of our algorithm are following : it is a fixed 
point-procedure, which implementation is quite easy, and the conditions at infinity 
are taken into account by a localized finite element method (BAI [2]). Indeed, we 
consider that the non-linearity is only significant in the vicinity of the body ; 
on the other hand the linear approximation allows an accurate account of the beha- 
viour of the flow at infinity. 

A localized finite element method 

We shall give here only some brief informations about the use of the loca- 
lized finite element method for the stream function equations. 
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Assume n and | Vi|^ | are small with respect to 1. The elimination of ri 
between the linear approximations of equations (3) and (4) leads to 

-2      V       . 
(6)    d\l)/ay  = F  i|j on FS  , defined by the equation y = 1 . 

V 
In the super-critical case, the solution m f2  , k = 1, 2 is approximated 

by a linear combination of the following functions : 

/'7\    j,k/   N    (3-2k)u).x  .       . (./)    (fi-Cx, y) = e      1  sm co.y, with 

tgw. = F^co. , CO. > 0, 1 < i < N, , k = 1, 2. 
"ill k 

We are thus led to the following variational formulation. 

(P     ) 
^ Ni, N2^ 

Ni    N2 Ni    N2 
Find (4;,Ai,A2) e V X R  x R  such that, ¥(((), Mi, M2) e V x R  x R  , 

(Vi)j| Vct))dx dy - F 
-2 

FS 

i[i(f)dx -  Z 

k=l i 8n, 
dy = 0, 

(i|) - i|j'^)(f)^ dy = 0 , 1 < i < N , k = 1, 2, where 
1. IX 

V = {^ e H^(fi^)|^|g = -f} , V = {(|j e H^(n^)|4;|g = 0}, and 

^k 
\l)    =     I >^^  <l>^   ,  with \ = (^1 , • • • . >^|^ ), k = 1 , 2. 

i=l       , k 

220 



In the subcritical case the basis (7) must be complemented downstream by 

-.2 (8)    'J)„(x,y) = sin (oj + (£-l)7r/2)sh w y , £ = 1, 2, with th w = F" oj , oj >0. 
X- 0 0 0 0    0 

we put 
As a consequence, A2 is complemented by the components Xi and A2, and 

N2 2 
ij;^ =  E  A? (^? +  Z  A  (f) 

i=l  ^  ^  £=1  ^ ^ 

Problem (P     ) is then complemented by the two following equations 

(9^) 

Ni, N2 

(i|; - 4^ )sh w ydy = 0, k = 1, 2. 

Solution of the non-linear problem 

From now on, we shall take into account the exact non linear equations 
on the free surface. In terms of the total stream function ^    =  i) + y,   equation (4) 
expresses as ■'■ 

-2 1/2 ' 
8i|j^/3n = (1 - 2n F  )    , from which we deduce 

94^ /3n = (1 - 2n F"^)^/^ - (1 + (dn/dx)2)~^/2,      i 

= 2F~^ n (1 + (1 - 2n F"^)^/^)"' + 1 - (1 + (dn/dx)2)"'/2 

Equations (3) and (4) can thus be replaced by (3) and 

(10) 3;jj/3n = v(n)'i^ + 5(TI), where 

(11) v(n) = 2F"2 (1 + (1 - 2F"2 n)^^^^~^ and 5(n) = 1 - (1 + (dn/dx)2)-l/2_ 

At the beginning of iteration number n + 1, we assume the height, 1 + n", 
of the free surface known ; the computation domain 0."^ follows, it is limited by the 
vertical boundaries E? and E2. Then, we solve problem 

(P 
,n+l) Ai^    =  0 in fi , and 

34^"^V9n = v(r)^)^''''^   + ^n'") on y = 1 + n"" , 
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together with the slip condition (2) on the bottom, and the boundary conditions on 

Z^ ar 
then 

l^  and E'^ which follow from the localized finite element method. From (3) we deduce 

n+1, .     ,n+l/   , .  n, 
n   (x) = - ij^   (x, 1 + n ) 

Note that equation (10) has been devised in such a way to reduce to equa- 
tion (6) when ri vanishes. 

Some preliminary results 

Each problem (p'^) is approximated by first order quadrangular finite ele- 
ments, and the successive meshes derive from affinities. Similar results to those 
of FORBES and SCHWARTZ [15] have been obtained with much smaller computation domains, 

Table 3 is related to the case of a supercritical flow and shows the de- 
pendance of the solution on the computation domain Q,   ,   for a Neumann condition on 
YP.   Table 4 is related to the subcritical case and allows the estimation of the 
discrepancy between the linear and non-linear solutions. 

It is worth noticing that our method leads to a solution which does not 
depend on the size of the computation domain ; we are thus led to assume that the 
non-linearity above all affects the phase and the amplitude of the downstream wave, 
in the subcritical case. Let us also mention that the procedure does not converge 
when the global Froude number is close to 1, i.e. when breaking occurs. 

Aknowledgments 

This study has been partly supported by the D.R.E.T. under contract 

number 81/1001. 

222 



IV. REFERENCES .   ■ 

[I] M. LENOIR, A. JAMI : "A vaviationdl formulation for exterior problems in 
linear hydrodynamias".   Comp. Meth. in Appl. Mech. Eng., 1978, 16, p. 341. 

[2]  K.J. BAI : "A  localized finite element method for steady two-dimensional 
free-surface flows".   First Int. Conf. on Num. Hydrodynamics, Berkeley, 
1977, p. 278. 

[3]  C. GUTTMANN : "Etude  theorique et numerique du prohleme de Neumann-Kelvin 
tridimensionnel pour un corps  totalement immerge".   Thesis, 1983, E.N.S.T.A. 
Paris. 

[4]  F. NOBLESSE : "Alternative expressions for the Green function of the theo- 
ry of ship wave resistance".   Report MITSG 79-23, 1979, M.I.T., Cambridge. 

[5]  M. LENOIR : "Methodes de aouplage en hydrodynamique navale,   et applica- 
tion a  la resistance de vagues bidimensionnelle".   Thesis, Rapport 164, 
1982, E.N.S.T.A., Paris. 

[ 6]  D. EUVRARD : "Les mille et une faceties de  la fonction de Green du prohle- 
me de  la resistance de vagues".   Rapport 144, E.N.S.T.A., Paris. 

[7]  WEBER : "Numerical computation of the Fourier transform using Laguerre 
functions and the fast Fourier transform".   Num. Math. 36, 1981, p. 197. 

[ 8]  G. DELHOMMEAU : "Contribution a  I'etude theorique et a.  la resolution 
numerique du probleme de   la resistance de vagues".   Thesis, 1978, E.N.S.M., 
Nantes. 

[9]  T.H. HAVELOCK : "The wave resistance of a spheroid".   Proc. Roy. Soc. 
A. 131, 1931, p. 275. 

i 

[10]  K. SUZUKI : "Numerical studies of the Neumann-Kelvin problem for a two- 
dimensional  semi-submerged body".   Proc. Third Int. Conf. on Num. Ship 
Hydrodynamics, 1981, Paris. 

[II] J.L. HESS : "Progress in the calculation of non-linear free-surface pro- 
blems by surface-singularity techniques".   Proc. Second Int. Conf. on Num. 
Ship Hydrodynamics, 1977, Berkeley, p. 278. 

[12]  P.L.F. LIU : "Boundary integral equation method applied to free  surface 
flow problems".   Innovative Num. Anal, for the Appl. Eng. Sci., 1980, 
Montreal, p. 179. 

[13]  C.H. VON KERCZEK, N. SALVESEN : "Numerical solutions of two-dimensional 
non-linear wave problems".   O.N.R. Tenth Naval Hydrodynamics Symposium, 
1974, Cambridge, p. 649. 

223 



[14] C. KORVING, A. HERMANS : "The wave resistance for flow problems with 
a free surface". Proc. Second Int. Conf. on Num. Ship Hydrodynamics, 
1977, Berkeley, p. 285. 

[15] L.K. FORBES, L. SCHWARTZ : "Free-surface flow over a semioiroulaT obstruc- 
tion".   J. Fluid Mech., 114, 1982, p. 299 

224 



4- "u^lO n 

1  . 
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.3 .4 .5 .6 .7 .8 .9 1 1.1 

D    N-,  =  49 0     N„  =  89 
15 A    Havelock 

Variations  of  R    versus  F„  and N„ 
il KB 

N     :   Number  of unknowns  on the body 

\^R 

NB\ 
.5 .6 .7 .8 .9 1. I.l 

49 .32   10~^ 
-2 

1.72   10 3.55   lO"^ 5,09   10~^ 5.71   10~^ 5.69   lO"^ 5.32   10~^ 

89 .35   10~^ 1.74   10~^ 3.65   10"^ 5.33   10"^ 5.9   10~^ 5.95   10~^ 5.5   10~^ 

Table   1   - The  sphere 
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.5      .6      .7      .8 

0  Present method 

.9     1       1.1     1.2 

A Havelock 

Variations of IL, versus F \ R 

Number of unknowns on the body : 85 

FR .6 .7 .8 .9 1. 1.1 1.2 

\ 
.61 10"^ 4.32 10"^ 

  

9.72 10"^ 13.73 10~^ 15.54 10"^ 15.71 10"^ 14.88 10'^ 

Table 2 - The ellipsoid of ratio 2.5 
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.5 . 

height 

elevation 
at   infinity 

•-• 

FROUDE    NUMBER:2.1 

length 
of   the half   bump 

-.7 .9 1.7 abscissa 

V  Present method 0 Neumann condition on E, 

Table 3 - Free surface - The supercritical case 

FROUDE NUMBER:.5 

3.2 5 

V Non-linear problem 0 Linearized problem 

Table 4 - Free surface - The subcritical case 
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A COMPUTATION OF FLOW AROUND A SHIP 

Allen V. Hershey 

Naval Postgraduate School 
Monterey, California 93943 

ABSTRACT 

A computation system is under development for the determination of velocity i.. 
the wave trains of submarines and ships. The first order linear approximation is used 
for the free boundary, while full accuracy is used for the body boundary. The body 
shape is simulated geometrically by a radical representation, and is simulated 
hydrodynamically by continuous distributions of source density. A point source is 
centered in a parallelepiped, which is large enough to bracket the ship. Velocities at 
grid points in the parallelepiped have been computed by Fourier integration, and have 
been converted into coefficients for interpolation by the fast Fourier transform. The 
velocity at each point on the surface of the ship is computed for unit source density 
at each other point. Then a matrix of flux is inverted to obtain the source density. 
The square of the velocity is integrated in accordance with the Bernoulli equation to 
obtain the wave resistance. 

INTRODUCTION 

For a number of years a computation system^ was under development at the 
Dahlgren Laboratory of the Naval Surface Weapons Center. Currently the computation 
system is under further development as part of the research program at the Naval 
Postgraduate School. The function of the system is the computation of wave trains 
behind submarines and ships. Work on the system has led to a general library of 
subroutines which are useful for many applications. Included in the library are 
subroutines for exponential integrals, Fresnel integrals, Bessel functions, polynomial 
approximations, and matrix arithmetic. 

In November 1979 there was a Workshop on Ship Wave Resistance Computations^. A 
number of workers were invited to compute flows around a set of ships. The results 
were so discordant that a second workshop was scheduled for November 1983. Especially 
out of line was a result which had been obtained with the previous version of the 
current system. However, it was discovered later that the computer's arctangent 
routine was bad, and this could have contributed to the discrepancy. The objective of 
current work is to do numerical analysis for improved accuracy. The computer is 
asked to give as much accuracy as possible with double precision. 

The method of computation consists of three stages. In the first stage the surface 
of the ship is expressed mathematically. Surface coordinates and surface components 
are computed for grid points on the surface. In the second stage the velocity at each 
grid point is computed for a unit point source at each other grid point. The velocity 
is derived from the Havelock integral for a linearized free-boundary condition. In the 
third stage the surface of the ship is represented by a continuous distribution of 
source density over the surface. The velocity at each point is derived from the source 
densities at other points after the inversion of a matrix of flux. 
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A new method for the simulation of the offsets of a ship has been presented in a 
previous report^. It uses radicals to represent the offsets of waterlines and section 
lines. On hand are the official offset data for a Series 60 Block 60 commercial ship, 
a DD963 destroyer, a CVN68 aircraft carrier, a TIO-S tanker, and a former 12-meter 
yacht. Only the first of the ships on this list has been simulated on the computer. 
The scope of the present report is limited to the radical representation at a Froude 
number of one third. 

Analysis of the flow around a point source has been presented in a previous report*. 
The potential and the velocity are given by double Fourier integrals. It is fashionable 
to express the integrals as the sum of a monotonic part and an oscillatory part. 
However, it was recognized long ago that these are parts of a single analytic integral. 
The integrand is cyclic and the trapezoidal rule is the high-accuracy rule of quadrature. 
However, there are so many wiggles in the range of interest that the trapezoidal rule 
requires too many intervals. A breakthrough has been achieved. An integration by 
parts makes possible the integration through many wiggles in a single interval. The 
integration by parts is provided by a chain of subroutines. 

Experiments on the computer have compared the accuracy of interpolations by 
splines, Lagrange polynomials, orthonormal polynomials^ and trigonometric 
polynomials. The most satisfactory interpolations were by trigonometric polynomials. 

PARALLELEPIPED 

Interpolation in a table is less expensive than random access to subroutines if the 
table is small enough. The point source is bracketed by a parallelepiped which is just 
large enough to contain the ships on the list. The length and the depth of the 
parallelepiped are divided by equally spaced section planes and waterline planes, while 
the width is divided into Chebyshev spacing. The subroutines were used to compute 
the velocity at each grid point in the parallelepiped. The data for each position in 
length and depth were transformed into the coefficients for trigonometric interpolation 
by the fast Fourier transform. The coefficients provide one-dimensional interpolation 
at each position in length and depth. 

SOURCE DENSITY 

The reference plane for coordinates in the fluid is the free surface of the undisturbed 
fluid. The unit of length is the distance between perpendiculars of the ship. The unit 
of velocity is the ship length per unit time. 

The length of the ship is divided into 64 intervals. A section line is situated at the 
midpoint of each interval of length. The depth of the fluid is divided into 14 intervals. 
A waterline is situated at the midpoint of each interval of depth. The spacing between 
waterlines is -^ and the bottom does not coincide with the edge of an interval. 

The velocity at each grid point on the surface of the ship for a unit source density 
at each other grid point was computed by interpolation to give a matrix of velocity. 
The flux through each grid pomt for unit source density at each other grid point was 
computed from the scalar product between the normal to the surface and the velocity 
at the surface to give a matrix of flux. The matrix was partitioned with the data for 
one pair of waterlines in each partition. The matrix was inverted with a unique 
partitioned matrix subroutine to obtain the source density. 
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WAVE RESISTANCE 

The current system integrates the pressure downward from the reference plane. 
The computed value of the coefficient of wave resistance is given in the following table. 

DIMENSIONS AND RESISTANCE 
{Simulation) 

Series 60 Block 60 

Length 

Beam 

Draft 

Area 0.1723 

Volume 0.004221 

Froude Number     . 5 

Wave Resistance Coefficient 0.002440 

15 

_4_ 
75 

This value is indicated by the letter H in the figure, which is from reference 2. It 
agrees well with other values of the wave resistance coefficient. 

The pressure on the hull is partly hydrostatic and partly hydrodynamic. Along the 
wave profile the pressure is zero. Only the fluid below the wave profile touches the 
body. The integration of pressure should be limited to the surface below the wave 
profile. 

The computation of source density is based upon the assumption that the product 
of source density and velocity per unit source can be expressed as a trigonometric 
polynomial. This may not be adequate near the stem or the stern where opposite sides 
are close together, or near the reference plane where source and image are close 
together. Accuracy could be improved by an increase in the number of intervals. 
However, the fashionable solution is to replace point sources with panel sources. This 
might well be done with the aid of a subroutine which computes the potential of a 
rectangular plate when the source density is expressible as a power polynomial in the 
coordinates of the plate. 

There are many experiments yet to be done. Full documentation will be presented 
in a forthcoming report from the Naval Postgraduate School. 

CONCLUSION 

A good value for the wave resistance coefficient has been obtained with the current 
system, but further refinements should be explored on the computer. 

230 



BIBLIOGRAPHY 

1. Computation System for Surface Wave Trains. I 
A.   V.   Hershey,   Proceedings   First   International   Conference   on   Numerical   Ship 
Hydrodynamics, J. W. Schot, and N. Salvesen, editors, 
(Naval Ship Research and Development Center, Bethesda, Maryland, October 1975) 

2. Proceedings of the Workshop on Ship Wave-Resistance Computations. 
K. J. Bai, and J. H. McCarthy, editors, 
(Naval Ship Research and Development Center, Bethesda, Maryland, October 1975) 

3. Radical Representations of Ship Simulations. 
A. V. Hershey, Naval Surface Weapons Center, Dahlgren, Virginia, Report No. NSWC/DL 
TR-3687 (July  1977) 

4. Computation of Velocity in the Wave Train of a Point Source. 
A. V. Hershey, Naval Surface Weapons Center, Dahlgren, Virginia, Report No. NSWC/DL 
TR-3720 (September  1977) 

231 



t- X A 
 

H
 

\ 

Q\*^ < 

V     \    ^ A   \ 

\ \ 

\ 
\ 

\ \ 

< 

1 
1 
1 
1 
1 
1 
1 

1 
1 
I 
1 

1 
1 

1 

H
E

IG
H

T
 M

E
T

H
O

D
) 

S
LO

P
E
 M

E
T

H
O

D
) 

1 
1 
1 
1 ( 
1 
1 
1 
1 

A
  
 -

A
D

E
E

 
C 

   
-C

A
L

IS
A

L
 {

W
A

V
E

 
©

 
-C

A
L

IS
A

L
 (

W
A

V
E

 
X
  
 -

C
H

A
N

G
 

1  
T 

   
-T

S
U

T
S

U
M

I 

. 

o 
CO 

a 
ai 
CO 

D 

o 
CM 

in 

o 
d 

B 

o 

I c c 
CO 

E 
3 

Z 

-   S 

I 
00 

3 

«D m N 

(j-OL X) lN3IOIdd303 30NV±SIS3U 

232 



NUMERICAL SOLUTION OF THE NEUMANN-KELVIN PROBLEM AND 

ITS APPLICATION TO SHIP WAVE-RESISTANCE COMPUTATIONS 

* * ** 
Wu-ting Tsai , Yeun-junn Lin  and  Ching-chao Liao 

ABSTRACT 

Numerical solution of the Neumann-Kelvin problem by the Green's 

function method is accomplished for the computations of ship wave- 

resistance.  To make the load of computation reasonable, some numer- 

ical experimental results are introduced in the present analysis. 

A computer program based on such mathematical model and numerical 

simplifications is developed.  Two examples calculated for the Wigley 

model and Series 60 (C^=0.6), show that the results are satisfactory. 

INTEGRAL EQUATION TO BE SOLVED 

In this study, the ship is considered to be in steady uniform 

motion on the free surface of an otherwise calm water of infinite 

extent.  The Cartestian coordinate system o-xyz, moving with steady 

velocity -U with the ship, is taken as shown in Fig. 1, where the 

xy-plane coincides with the undisturbed free surface. An irrota- 

tional motion of an incompressible, homogeneous and inviscid fluid 

is assumed.  Then the velocity potential '$(x,y,z) of a fluid domain 

V can be written as 

$(x,y,z) = Ux +cjO(x,y,z) I (1) 

*  Department of Naval Architecture, National Taiwan University 

■*  Engineering School, Chung Cheng Institute of Technology 
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where ':-f'(x,y,z)    is   the   potential   of   the   perturbation   due   to   the   ship, 

When   some   suitable   restrictions   are   imposed   on   the   geometry   and/or 

the   velocity  of   the   ship   such   that   the   free-surface   boundary  condi- 

tions   are   linearized,    the   perturbation   potential   ^  shall  be   the   so- 

lution   of   the   following   boundary   value   problem. 

V^ =0 

^  - U T\-L 
A^ _ _ 

k„= ^ 
u^ 

in fluid domain V 

on hull surface S 

on calm free surface z=0 

^-(^^-^'-r^ ^ 

(2) 

(3) 

(4) 

(5) 

This is the so-called Neumann-Kelvin problem, which Brard (1971, 

1972) dealt with, in the steady wave resistance theory and plays 

an important role between the linear theory and the exact problem. 

U 

Fig. 1  Coordinate System •  ' 

The above specific problem may be solved by means of an appro- 

priate Green's function relating to the boundary conditions.  The 

desired function G(P;Q), often known as the HavelocX source func- 

tion or Kelvin source function, is a harmonic function in the fluid 

domain except having a singularity at Q, and satisfied the linear- 

ized free-surface condition and the radiation condition as follows, 

G(P;Q) = 5(P;Q) P,Q ev (6) 

234 



^M.^1^  ^^=0   , on   z=0 (7) 
6X"        "^^ 

OCXRI     ^< o 

•p-^oo [ O C //R ^   X > o  , 

(9) 

This  yields   the  expression, i 

where 
■ I 

X   =-4Ko      c^osecoe . S/K.[_^C«<--"^)(^e]'^os[K=cy-73 s-/>u9 sec^J 

1 ~ = - 4^ f ^G(O.set's e'^^'^^'^^'^'. il^b^^'K-lyccsQ] c^ii^c^-X) s/^^ ^^^-'cs] 

By  use  of   such   a   source   function,   the   Green's   second   identity   gives 

the   perturbation   potential ^ into   the   form, ' 

where Cr(Q)   is   the  density  of   the   source   distribution   to  be   deter- 

mined   to   represent   an   equivalent   flow   field.   Meanwhile,   the  Neumann- 

Kelvin   problem  can   be replaced   by   the   following  equation. 

TO-Cp^^l^CQ^^Cp/O^^SfQ)- 

^ ^^ _ (12) 

CM ' 

which is a Fredholm integral equation of the second kind for the un- 

kraown functionCT(Q) defined over the hull surface S and waterline G 
■w 
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Though other types of integral equation had been derived, 

s-g-' Liao (1973)/ only the forni given by equation (12), i.e., 

the representation by an equivalent source distribution, will be 

considered in the present study. 

NUMERICAL TREATMENT OF THE INTEGRAL EQUATION 

Numerical solution of the integral equation (12) requires 

an approximate representation of the hull surface S and waterline 

C^, and an approximate evaluation of the relevant integration over 

S and C^, to discretize the integral equation (12).  In the present 

numerical computations, the hull surface and waterline are approxi- 

mated by a large number of plane quadrilaterals and line segments 

respectively.  Over each of the elements the source density is 

assumed to be constant. Thus the integral equation (12) is replaced 

by a set of linear algebraic equations for those unknown values of 

source density over the plane and line, elements.  The source densi- 

ty of the waterline element is assumed to have the same value as 

that of the plane element adjacent to such line element.  With the 

hull-surface boundary condition being satisfied at the centroid of 

each plane element, the discrete form of the integral (12) is 

^     d='  ^  ^  >\ ^  y           (i = l,2 N) (13) 

where m^{=^i/\J)    is the nondimensional source density on the i-th 

element, 

nj_ is the normal vector of the i-th plane element directed 
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toward the fluid domain V, and 
I 

N is the number of plane elements which approximate the 

whole hull surface S with the first M elements ending at 

the waterline. 

A^. and 13^  are called the influenced coefficient matrices, 

A;i=  A^-Vc^^^-y^''^^^'^'^'^3c'S ,     ; (14) 

'J 

^^'j - - 4-xK j ^-■'7-T"'«^.,a. ,^,,V7 o-)-^^.ta^^  . (15) 

where S . is the region of the j-th plane element, and 

^wj -^^ ^^^   region of the j-th line element. 

Construction of the influence coefficient matrices A. . and 

B^j is quite a great numerical work due to the tedious integra- 

tions of the kernel function all over the elements representing 

the hull surface and the waterline. To reduce the extremely long 

computer time and make the computations practical, one may adopt 

the numerical experimental results 9btained by Lin (1980), and 

the integration of each kernel function is simplified by the 

approximations. 

where a^ is the area of the j-th plane element, 

Ij is the arc length of the j-th line element, 

( ^oj » t-^ I C.j ) is the centroid of the j-th plane element, 

and 

( 5oj , T»j » 0 ) is the midpoint of the j-th line element. 
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Formulas developed by Hess and Smith (1962, 1964) are used for 

integrating the kernel of Rankine-source term kernels \/-^[-^-^-^). 

Concentration of constant source density panel as a point source 

is assumed for the integration of the wavy term kernels y-J-. 

CALCULATION OF THE DERIVATIVES OF THE HAVBLOCK SOURCE FUNCTION 

To compute the derivatives of the Havelock source function 

VI* in equations (16) and (17) numerically, the integration 

contours in complex kcosO plane, as suggested by Noblesse (1977, 

1978, 1979) are used to evaluate the principal value double in- 

tegrals. Fig. 2 is an illustration of the integration contours, 

which have two poles at ±o^„ and a branch point at | 6 I or -||3| , 

where ^  = ^coso    ,     /3 =%^:nG ,   and 

^ RGO^ 

Fig. 2  Integration Contours in Complex OL Plane 
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Via the above scheme, tlie VI' have the following expressions, 

c 
AT I     ' 

^ -j- + r TV 

^5 

"TV. 

= - f-1 "X 

-t 
■K 

-^)^^o'   1      Cf© sec"©   e^f>[«^(^-^S) 5ec*r] S)>iCl^^ S^c^] 

(18) 

and 

-^—^ ^'^ttJT^^ I^Le^E.c^)-^] , 
TT 

2» I~ r ^ 

'^tCi^^^M^Ce^E.co-i] 
-1 (19) 
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where H(x-5) is the Heavside step function, 

E^izi^= [      '^'^dt.     ^^  ^^® complex exponential integral, and 

The principal value double integral has been transformed into a 

one-fold integral whose integrand contains a complex exponential 

integral. 

Fig. 3.a and Fig. 3.b show the integrands of the first inte- 

grals in equations (19) for a particular set of nondimensional 

variables k (x-?), K   (y-?) and k {z+^).   The Simpson's rule is o       o o 

used for such numerical integration. For the integrands of the 

second integrals in equations (19), Fig. 4.a and Fig. 4.b indic- 

ate that the integrands are smooth functions in the integration 

interval. Gauss-Chebyshev quadrature (using Chebyshev polynomin- 

al of the second kind ) is used for doing these numerical integ- 

rations. 

The evaluation of the complex exponential integral E.(z), 

z=u+iv is carried out as follows, 

2  2 . for u +v < 5, the series expansion provided by Abramowitz and 

Stegun (1964) is used. 

where y=0.57721566....  is the Euler's constant, 

2  2 for u +v > 5, 
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(22) 

Gauss-Laguerre quatrature is used to do the numerical integrati- 

ons of the infinite integrals in equation (22). The computation 

of complex exponential integral was verified by comparing the re- 

sults with the tables listed in Abramowtiz and Stegun (1964) PP. 

249-251. 

COMPUTATIONS OF THE WAVE REoISTANCE 

After solving the linear simultaneous equations for the unknown 

source density, the velocity and the pressure coefficient at the 

hull surface can be obtained by 

1l 

i- 
U  ^   . .  - -X 

(23) 

and 

1        u    • ■   ;      (24) 

Free surface elevation f(x,y,0) is given by 
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As for the computations of ship wave-resistance, the sugge- 

stion of Breslin and King Eng (1963) is adopted. By numerical 

experimentations, they found that the point sources can replace 

the panels to give sufficiently accurate calculation of wave re- 

sistance. The wave resistance acting upon the ship can be compu- 

ted most directly by integrating the x-component of the pressure 

acting on the hull surface, 

Cy = . '^P   ^ ^ ^(^.'-t ) • (25) 

An alternative expression of wave resistance can also be derived 

from the conservation of momentum, and the wave resistance coef- 

ficient C  can be expressed as w • 

      - ,  ,   ,  >  i  ^*       ^ 
L   [c c©^ -^ 5^D:) ] c<-© 

 ^LM  A ce^ de (27) 

where A (0) Is called the weighted amplitude function, and 

C Co)/ L- h    \ [\ ^°^ 
= —5^^ sec 0 

K-        1 ^L 
S LS^ 6 ^in 

-^ci>vnC5,7,0:) Ch>5sec©)  coSCf^'^sec^.S/M.f? 3/l-t (;<.7 

1 COS 1 

(28) 
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NUMERICAL RESULTS 

Two ship hull forms,the Wigley model and the Series 60, 

Ct)=0.6, are used for numerical solution of the Neumann-Kelvin 

problem and for the computations of ship wave-resistance. The 

numerical results include wave resistance coefficients, wave 

elevations on ship hull side, and weighted amplitude functions. 

The computations were carried out on the UNIVAC 1100 computer 

system at the National Taiwan University.  Wave resistance coef- 

ficients and wave elevations are compared with experimental data 

and other numerical results which also solving the Neumann-Kelvin 

problem.  Both the experimental data and the numerical results 

were presented to the "PROCEEDING OF THE WORKSHOP ON SHIP WAVE 

RESISTANCE COMPUTATIONS, 1979". 

Wigley Model   For the reason of symmetry, the starboard 

side of the Wigley model is approximated by 252 plane quadri- 

lateral elements.  The results of computation are shown in Table 

1 and Fig. 5 to Fig. 15, 

Table 1  List of Wave-Resistance Coefficients for Wigley Model, 

Fig. 5   Arrangement of Surface Elements for Wigley Model, 

Fig. 6   Comparison of Wave-Resistance Coefficients (Cp) with 

Experimental and Other Numerical Results for Wigley 

Model, 

Fig. 7   Comparison of Wave-Resistance Coefficients (C^) with 

Experimental and Other Numerical Results for Wigley 

Model, 

Fig. 8   Comparison of Wave Profile with Experimental and Other 

Numerical Results for Wigley Model at Fn=0.266, 
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Fig. 9 Comparison of Wave Profile with Experimental and Other 

Numerical Results for Wigley Model at Fn=0.348, 

Fig. 10 Comparison of Wave Profile vith Experimental and Other 

Numerical Results for Wigley Model at Fn=0.452, 

Fig. 11 Amplitude Function of Wigley Model at Fn=0.266, 

Fig. 12 Amplitude Function of Wigley Model at Fn=0.313, 

Fig. 13 Amplitude Function of Wigley Model at Fn=0.348, 

Fig. 14 Amplitude Function of Wigley Model at Fn=0.402, 

Fig. 15  Amplitude Function of Wigley Model at Fn=0.452. 

Series 60, C =0.6  The starboard side hull surface is meshed 

into 325 plane elements and the numerical results are illustrated 

in Table 2 and Fig. 16 to Fig. 31, 

Table 2  List of Wave-Resistance Coefficients for Series 60, C,=0.6, 
b 

Fig. 16  Arrangement of Surface Elements of Fore Body for Series 
I 

60, C,=0.6,      .  I 
D 

Fig. 17  Arrangement of Surface Elements of Aft Body for Series 

60, C,=0.6, b 

Fig. 18 Comparison of Wave-Resistance Coefficients (Cp) with 

Experimental and Other Numerical Results for Series 

60, Cj^=0.6,        I 

Fig. 19  Comparison of Wave-Resistance Coefficients (Cw) with 

Experimental and Other Numerical Results for Series 

60, C^=0.6,       i 
b 

Fig. 20  Comparison of Wave Profile with Experimental and Other 

Numerical Results for Series 60, C,=0.6 at Fn=0.22, 

Fig. 21 Comparison of Wave Profile with Experimental Results 

for Series 60, C =0.6 at Fn=0.25, 
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Fig. 22  Comparison of Wave Profile with Experimental and Other 

Numerical Results for Series 60, C, =0.6 at Fn=0.28, 

Fig. 23  Comparison of Wave Profile with Experimental and Other 

Numerical Results for Series 60, C =0.6 at Fn=0.30, 
b 

Fig. 24  Comparison of Wave Profile with Experimental and Other 

Numerical Results for Series 60, C =0.6 at Fn=0.32, 

Fig. 2 5  Comparison of Wave Profile with Experimental and Other 

Numerical Results for Series 60, C,=0.6 at Fn=0.35, 

Fig. 26 Amplitude Function of Series 60, C,=0.6 at Fn=0,22, 

Fig. 27 Amplitude Function of Series 60, C,=0,6 at Fn=0.25, 

Fig. 28 i\mplitude Function of Series 60, C, =0.6 at Fn=0.28, 

Fig. 29 Amplitude Function of Series 60, C =0.6 at Fn=0.30, 

Fig. 30 Amplitude Function of Series 60, C,=0.6 at Fn=0.32, 

Fig. 31  Amplitude Function of Series 60, C,=0.6 at Fn=0.35. 

CONCLUDING REMARKS 

"Neumann-Kelvin problem approach" is used as the mathemati- 

cal model in the present computations. Two essential points can 

be concluded for the numerical scheme: 

1) Concentration of the source panels as point sources is appl- 

ied for the approximate integration of the wavy term kernels, and 

for the computations of the wave resistance.     ' 

2) The source density of each waterline element is assumed to 

be identical with that of the plane element ending at such line 

element. 
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Two ship hull forms, the Wigley Model and Series 60,Cb=0.6, 

are used for the numerical calculation.  The numerical results 

are satisfactory for both two ship hull forms.  The following 

conclusions can be obtained from the numerical results : 

1) By use of both wave resistance coefficients and wave profiles, 

one cannot judge that whether the waterline integral terms plays 

an important role for the numerical analysis of the Neumann-Kelvin 

problem or not. ' 

2) For both of the two methods for computing the wave resistance, 

pressure integration, and amplitude function approach, the results 

show no significant difference, yet the pressure integration scheme 

has less hump-hollow phenomenon. 
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Fig. 3.b  Integrands of the First Integrals 

in Equations (19) 

250 



•Y-DERIVATIVE 
-Z 

^     60       AO 

\ 

\ 

\ 

0 

-A 

-8 

-12 

-16 

-20 

-2A 

-30 

20      AO      607i^^~ 

\ 
\ 
\ 

/ 

// 
I     / 

/ 
/ 

^t^ 

/ 

Fig. 4.a  Integrands of the Second Integrals 

in Equations (19) ; 

251 



Y-DERIVATIVE 
Z 

8CK^60      AO      20     0 

-A 
\ 
\ 

—      \ 

\ 
-8 

-12 

\   20      AO      60//'8J3^ 
'    /0=siri't 

\ / 
/ 

\ 
\ 

/ 

Fig. 4.b  Integrands of the Second Integrals 

in Equations (19) 

252 



n 
o 

O 

V^  • 

X) C U3 o CN r- o CO Oi fN) (NI en o o^ 00 

O r- (N CM o m IT) fNl r~ r^ 00 \D VD 

CO ^ 'T cn ^ in CM ID (N en CO UD (Nl n 
C • bn en en O (N t^ r- I^ m m m CO CO 

0 H^ 
U 5: o o o f-t rH ,-1 rH r-i rH r—1 ,H rH (N) 

0) -U 

O W 
2 C 

O J 

1-1 • 

C • 
O K4 
U 3: 

m 
O 
iH 

X 
r-l 

o 
Q 

a >i 

o 
0) 

^ w 

CD 
in 
CO 

O 

o 
in 

en 
in 

00 
O U^ iD 
IT) CM CM 
-g- 00 n 
^ r^ r- 

cn 
in 

en 

in 

o r^ en r- 
r- r^ o ^ 
.-1 en in en 
in in CM rH 

cn 
en 
in 
CTi 

en 
r-t 
m 
en 

o 
in 
CO 
en 

m CO CM <D 
cn 

CM 

CO 

en 
(N 

ID m m (N iD m 
in ^ m CO m o 
r-i ^ in in en o 
00 CM CM ^ o r- 

rn m o 
r- n m 
cn o CM 
H r- r^ 

CO 

en 

CNJ 

O O 

«3 
CM in UD r-~ CO O 
CM CM CM (NJ CM ri 

on 
ro 

(N 

in 

n 

m 

en (N in ■^ r^ CO CM 
CO m in ro en iX) m 
o' o ^ ^ m O 01 

CM 

M . 
0) -U 

r^ CM m iD rH rH •^ 00 ^ ^ r- CM ro 
^ "^ ID r-\ O \r en CM CM n f^ 'T o 

O  W rH en ID CM ID 00 tn .H CM CM en O i^ 

2 C • ID r^ r^ CO O n m m rH rH r-\ en 0> 

0 fj 
O o o o rH rH rH rH rH rH r-\ r-\ CM 

ID ^ 
CM ^ 
CM r^J 
in ^ 

in 

'^ rH CO r-\ iD rH ro ID \D in 00 m (^ 
n ^ in 00 in ^ m m en r~ rq r-- 01 
in iX) ■^ CO o <^ rH rH m ^ r- (N I-- 
iD o en o ID r-\ en (^ CM CM n r- rH 

^ 

00 CM 
{N >^ in iD O in 
ro m ro ro ^ ^ 

ooooooooooooo 

* * * * 

cn 
Ifi 2 
c u 
(J M 
H H 
-P < 
rtJ H 
+J D 
:3 CX 
a :^ 
E c^ 
0 u 
u 

w 
>H u 
0 
HH § 

H 
!H w 
(1) M 
X3 CO 

13 § 
C 1 

w 
OJ > 
•-n < 
P 3: 
0 
!M a. 
PH M 

K 
T; C/l 
OJ 
T:5 2 
c U 
dJ 
F IX 
B o 
O E 
C) en 
d' 
u ^ 

o 
d' 5 
x: 
+j en 

r- 
w 0^ 
-H rH 

>- 
■K ^5 

o 
2: 

i-H 
tn 
-H 
12 
SH 

o 
MH 

in 
-P 
C 
0 

■H 

U 
■H 

MH 

u 
dJ 
u 
v:; 
rtj 

■p 
U] 

•rH 

d' 
Pi 

1 
dJ 
> 

3: 
MH 

o 
-U 
U) 

■H 

Xl 

X! 
fe; 

253 



CM 
LO >- 
CO 

O 
•• CQ 

_l OH r\ 
hJ UJ CH 
Q OQ liJ 
O z: h- 
z: 3 U- 

Z < 
>- \y 
ijj _J 
_i UJ LU 
CD z a: 
H < o 
12 a. u. 

0) 

0 s 

0) 

■rH 

IS 

u 
0 

c 
o 
E 

w 
QJ 
rj 

M-l 
0 

c 
QJ 

E 
0) 
D^ 
C 
(D 

< 

IT) 

■H 

254 



% 

*-3 

© 
1 

1 

0               1 
^ 

.N
G

 
U

K
l 

U
K

l 
(F

R
E

E
 T

O
  

S
IN

K
) 

TS
U

M
I 

JS
ID

E
R

   
W

L.
  

IN
T

E
G

R
A

L 
" 

C
O

N
S

ID
E

R
 W

L.
 

IN
TE

G
R

A
L t I/) 

0 1 
I/) 

,    1 k 
CD 

X 

Q. 
O 

—  <L i\i  r 
< X z) : 
CD   O   CO   c 

1    1    1 
"-> X ai i 

^ _> ^ \- 
D   (/) O   O 
/)   h- o   Z 

1       1 
D   1- O   6 

1 m 

C3 Li- 

LT) 
■of 

CO 

CD 

LO 

C3 

CD 

CD 

LO 

CD' 

CD 

C3 

>. 
Q) 

-H 
tn 

■H 
[S 

i-l 
o 

I4H 

U) 
f— +J 

+-> rH 
■H 13 
:? y) 

CIJ 
..-^ « 
Cl, 
U -H 
v-^ ffl 

u 
m ■rH 

QJ u 
o Q) 
c B 
d 3 
-U 2: 
c/) 

•H u 
m u 
(D rC 
Di +J 

1 o 
(D 
> Ti 
fO C. 
'S 03 

^-j r-l 

0 (U 
-P 

c C 
t) a; 
U) fc: 

■H •r-l 
V^ U 
m Cl) 
o^ a 
b X 
0 w 
u 

«^ 

1X4 

255 



c 
LI. 

•H 
:5 

a 
4-1 
c 
0) 

■H 
0 

•H 
m 

o 
c 
fa 
+j 
Ul 

Qi    ^ 
I 

o 

c 
o 
en 

■H 

(0 

r- 

[14 

256 



CO 

CD 
C3 

o 

o 

o 
I 

oo 
o 

1 

o 
T 

X 
Osl 

UJ 
h- 
< 

5 
cc 
o 
o 
u 

< 
Osl .—. 
o" u 

1 _) 
1— 

o 
T' 
O 

o 

C 

nj     . 
4-1     Q 
C   ~" 

p 
■H 

C     CO a, 
W   0) 

rC        O 

:5 >. 

r-J        pi 
■H -H 

0 -^ 

Q^   O 

o; 
>   CO 
rd -p 

O 0 

G 

U) (0- 
•H o 
U-H 
ft! ^J 

Old) 
GE 
O D 

CO 

■H 
C>4 

''>i3/rN0IiVA313 3AVM 

257 



°    «^ : 
n     o' ̂  !• 

or D o'A     • o cr 
< t- 

n o)          • 
cil    9 

-1 <- 
3 _)                          ' 1      1 » K r 
S 3 < '^ 
PS • k D 
to I— 

CO 
LU 

• c 
•c 

1 1 

i° 
O UJ 1     \ 

■2L U 1       « a  \ 
LU Z 
—1 LU 
3 -1 

' 
V       \  

• \ 
CD 3 °<»\ cc m \   --.\ 

f               < 
1 ,^^^\ °\'.\ 

CO r,^»\ to          cr <I °    \«\ ^ z         o m V    , K 
.    .             .  LU 

CO to       i^: 1- O 
^, 

II 
»\ 

3 ^D        O      . C i^ 

TA
L 

R
ES

 
TA

L 
R

FS
l 

W
L.

IN
T

E
 

D
ER

 W
L LL 

•o\   \_ 
•O    ^ q 

•    r 

X
P

E
R

IM
E

N
 

X
P

E
R

IM
E

N
 

S
U

TS
U

M
I 

O
N

S
ID

E
R
 

' 
lO

T 
C

O
N

S
I *' c 

o 

/ 1 
'•   /   / 

1 
o y^^^ 

( 3     J^' 
LU LU h- U ^ 

oPj! V^^ 

1  □ • o D. 
1     1 

'r^S-^^''^ 
( 

-    ' '   ^- ■^     o 

/'^^^ < a   o 
^ r^'^       • (O ' c » a 1 

- yi_n   

O 
CO 

O O 
o 

°>13/rN0IlVA313 3AVM 

o 
I 

O 
U 
(U 

4:: 
+J 

CD 
0 

O 

1 
  a

n
d

 
34

8 

-<r. _J 7i      . 
+J C o X C   II 

CN Q_) n 
. t: h 

LU •H 

Z 
S 
cr h 

  E
x
p
ei

 
o

d
el

   
a
t 

o ^Z 

o 
O 
o 

•H 

0) 
_j dJ^ 

< 
z IW ^ 
•—• 0 

rsi CD Ul  !-l 

O" 
1 

3 
l- 

a, 0 

0) 

o > w 
z 'i^ 

-<r o :3 

1 
0   nj 

05 ffi 
CD 
o 

1 

■H U 

E E 
0 :J 
US5 

CO 

CM I 

O" 

o^ 

258 



o or 
t- o 

• D °        c 
CD 

a  • 
D 

O         ^s^ 

o              \ 

-E
X

P
E

R
IM

E
N

T
A

L
 

R
E

S
U

LT
S

. 
W

IT
H
 

T
U

R
B

U
LE

N
C

E
   

S
T

IM
U

L
A

 
- 

E
X

P
E

R
IM

E
N

T
A

L
 R

E
S

U
LT

S
-N

O
 

T
U

R
B

U
LE

N
C

E
   

S
T

IM
U

L
A

T
 

T
S

U
T

S
U

M
I 

C
O

N
S

ID
E

R
 

W
L.
 I

N
T

E
G

R
A

L 
N

O
T
  

C
O

N
S

ID
E

R
 
W

L
. 

IN
T

E
G

R
A

L
 

o          •    \ 

o       • 
°   o   ., 

? 
I? 
C) 

C) 

IT 

c c 

3 

II 
c 

o 

i » 
°c 

o d 

^ 

i 

!   D   • o o 
o 

> 

// « a 1 o« a 

CO 
o 

CD 

<r _1 

o X 
Csl 

UJ 
t— 

Csl < 
/—i' ^ 

, ■ 

o 
cc 
O 
O 

o u 

o 
CO CNI 

o o 
I 

Csl 
o 

o 
I 

CD 
O 

I 

O 

s- 

Q 
3 
H- 

5 
o 

+> 
O 

Tl 

ifl in 

r^ . 
rtJ O 
-P II 
C C 
Q)   P4 
E 

•H +J 
5-1 fC 
Q) 
Q4.H 
X   0) 
W '^ 

0 

4-1 
■H > 
5   (D 

-H 
0)  Cn 

-H -H 
■H   S 

O ^ 
^4 o 

CD tfi 
>   -P 

O P^ 

O -I 

•H o 
S-l -H 
(T3 U 
a <U 
E E 
O 3 
U 2 

•H 

''>13/rN0llVA313 3AVM 

259 



o 
<D 

ot: o 
-j itj 
< h- 
QC  Z 
O H 
liJ 
J-     • 
Z  -J 
H  DK 

J S d 
D:  O  a 

H O 
(0 ac <r> -sz 
<D Id Z 
CJ O Q UJ 

H  O  _J ■♦ 

o CO         OQ 
H Z  J-  3 
C q o o o z o u. 

N 

X 

CD 

L/> lo G> 

CD CO 

260 



a> 

CD H 
U 
»- * 

H D: 

J S 
DC Q 

, H 
CO  Qi CO 

UJ — 

H 
CO 

UJ 

o 
2: 

CO 

o n c 
U- 

la 
O O 
Z  O 

I 
I 

il 

O 
n, 
CD 

L. 
l/> c» 

C9 
C3> 

0 
CO en 

•-{ 
ro 

C 
II 
C 

cs> PM 

r^ +J 
(d 

r—l 

0) 
T3 
0 

CS) S 
CO '>H 

QJ 
r-l 

cn 
■H 

s 
cs> 14-J 

LO 0 

q 
0 

•H 
■y 
0 

CS> 13 
'T PM 

Qj 
■o a 
4-' 

•H 

0 
00 E 

<: 

■N 
rH 

G> cn 
CVJ •H 

o 

PM 

C9 

261 



X 
a> 

^< 
I— 

csi 
to 

CO 

00 

c 

-p 
10 

o s 

t-( 

en 
-H 

o 

c 
o 

o 
c 

0) 

•H 

ro 

-H 

C9 LO O 

CD G» 

262 



<D 

< 
ct: 
CD 

^ 
UJ 

en z 
<D H 
UJ 
h- • 
Z _J 
H :x 

. Q: _J 
-1 UJ UJ 
3: 88 

CJ Q: CO 2: 
cs> iij z 
^ 0 0 UJ 

• H 0 ^ 
o CO m 
II z 1-  ID 
c 8 0 0 

U- Z Ci 

X 
r\ 
<D 

«^ 
L- 

u> 

O 
'^ 

t 

O 
II 
c 

(0 

0 

>^ 
0) 

rH 

•H 
12 

C 
0 

•H 
-P 
O 
C 

Q) 

:3 

■H 

a. 

'd' 

■r-\ 

263 



< 
fti 
CD 

-J Id 
< H 
oc 21 
CD H 
UJ 
h- • 
"Z -J 
H ^ 

• OC _J 
_l UJ UJ 
DC o a 

H o 
ca cx: CO 2: 
\r> UJ Z 
^ o o UJ 

• H o _j 
o </^ ca 
n z H- zy 
c o o 0 

U- o z 0 

I ! 

M 

X 
/\ 
(D 

< 
L- 

IX> <s> [f> 0 

CS) <s> 

264 



o 

o 

)-4 

-H 
(/) 
C 
o 
u 

-p Cvl cn o in T M- in n 
c O o 00 CJi r- 00 o iT) 

M 0-J m 00 CTi n cn cn (N 

IT) cn ID o ^ ro cn 'C' 

►J O o r-\ fN fN) fM CN ro ^>- 

s^    • 
CD  4-) CN iX> in cn ^ t-i rsi fNj 

-v C m in m m CTi CO o 0~i 

•H M 00 rsi o 'T in lO m in 
-U   U) m 00 CO r-H "^ ro 0^ 'T 
O   C     • . • • • • • • • 
2   O tJ n o rH CN) CNl CNl (NJ ri 

U 3: 

U    ' 
0) -i-i ^ cn ^ O r- O r-i ri 
Ti   C ID CTi '^ cn o o ID U) 

-H H in ^ r-{ rH o T IXJ U) 

W UD CO r^ n ^ nH in O 
C     • • • • • , • • • • 
o HJ o o -H CNJ CN CN) CN n 
U 3: 

-p 
o 
2 

i-l   • 
0 -p cn iD l£) CO cn r-i 01 O 
TI   C oo ■^ ^ CO ID 00 CI in 
•^  M in r- c:^ cn cn O ON] U) 

W ^ r~ in CO o i-H vO o 
c   • . • • • • • • • 
o ^ o o rH r-l (N) CN (N C) 

U 3: 

0) 
TD 
O 

.-H 
X! 

O 
Q 

CN r- rH rs) T cn cn 00 
00 ID cn 1/1 ro iD o cn 
o ^ CN ID in 00 .-1 (M 
CO cn CN 

• 
M <D ^ cn r-H 

in    iD    in    •^    in   r- 

cNiinr-oDocNLOio 
CNCNCNCN    rommn 

oooooooo 

in 
c 
0 

•H 
+J 
(0 
-p 

e 
0 
u 

u 
0 

u 

g 

C 

(D 

13 
0 
SH 
t^ 

'C 
Q) 

c 
QJ 

i 
o 
o 
0) 

-p 

m 

< 

O 
U 

U 
U 

H 

w 
I 

a. 
M 

m 

g 
a- 
s 
cs; 
O 
3: 

cn 

(31 

^ 

O 
II 
Xi 
u 

o 

0:1 
(U 

■H 

m 
w 
»-i 
o 

4-1 

m 
4J 
c 
0) 

O 
•H 
in 
M-l 
0) 
O 
u 

0 
c 
(0 

ca 
-H 
0} 
0 
oi 

I 

12 

O 
■M 
01 

0) 

rd 
EH 

265 



SERIES  60   CCB-0.65 

FORE BODY 

Fig.    16     Arran'-jemen t   of   Surface  Elements   of  Fore   Body 
for   series   60,   C]3,= 0.6 

SERIES 60  CCB-0.6> 

AFTER  BODY 

Fig.    17      Arrangement   of   Surface   Elements   of   Aft   Body 
for   Series   60,   C]3=0.6 
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Neumann-Kelvin Problem Solved by the Iterative 

Procedure Using Kess & Smith Solver Program 

H. Adachi and H. Takeshi 

Ship Research Institute   ' 

Abstract 

The analysis of the low speed theory by the iterative method will 

introduce the Neumann-Kelvin problem as the basic  fundamental problem. 

This fact will provide an additional importance of the N-K problem in 

the wave making resistance calculation. 

In order to calculate the N-K problem, a method making use of 

the Hess & Smith program as a  fundamental one 'is devised.  The method 

is found to be useful to treat the line integral and give the lucid 

explanation for the N-K problem. 

■ 

1. Neumann-Kelvin Problem in the Low Speed Theory 

The admittedly basic form of the velocity potential in the low 

speed theory of the steady wave making resistance theory seems to be 
-\\     ON 

given by the following form, "-^'^^ 

$ = X + 4) = X + 4)^ + (})^ , (1) 

where i^     is the velocity potential of the basic flow satisfying, 

,2,,R. (L)  V2(;)''(P) = 0 PeDe 
R 

(F)  11 = 0        .        PsFe 

(R) iv<})^| -> 0 as IPUOO 

(2) 

where De is the fluid region outside of hull S„ bounded by the free 

surface Fe (z=0) and the surrounding surface S^, and n is the inward 

normal vector in the fluid region De. (See Fig. 1)  And ^  is the 

velocity potential with wavy property superposed on the basic flow 

which satisfies the following conditions. 
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2.W (L)  V^(j)  = 0 ,w PeDe 

(H)  M = 0 PeS B 

where 

with 

(Pv)  Radiation condition, 

R 

(3) 

D(x,y) = -<^'^^ +  N(x,y) , (4) 

•8x N(x,y) = -kia'^  + *x fe + *y J3^H*f + 4') 

(5) 

The free surface condition for the wavy potential can be rewritten as 

follows, 

where 

And 

(F) F<t>^  = D(x,y) + E(x,y)      PeFe , 

F = ^3^2 + v|^ with v=g/U^ 

E(x,y) = -{(1+cj,^)^ + (j,^ 1-}^^^ + <i>^ 
\   yj/ t\  ^x'^ 3x   ^y 3y  ^   ^xx 

(6) 

The boundary value problem (3) may be treated iteratively assuming the 

condition, 

E(x,y) = o(<^^    . 

Thus, the free surface condition for the j th iteration problem writes. 

where 

(F)     Fcj)^:^ = E^(x,y) PeFe   , 

,W E-L  =  D,   Ej   = E(({,?_j^)     j>2   . 

Therefore  j   th problem will   take   the  following  general   form. 

PeDe 

(7) 

(8) 

,2 .W (L) V^(j)? = 0 

(F) F4)^  = Ej(x,y) 

(H) |^^=0 

(R) Radiation condition. 

PeFe 

PeSg 

(9) 
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Making use of the Green's theorem, the j th wavy potential will be 

written into, , , 

*^(p) 
1 
5TF 

dS{G(P,Q)|^ 4.^ AW 9G , 

where the Green function must satisfy the following conditions, 

(L)  V^GCP.Q) = 47T6(P-Q) 

(F)  FG(P,Q)  = 0 

(R)  Radiation condition, 

z<0 

2 = 0 

,W Then *. can be transformed as follows 
J 

,W _ 1 
dS(}) 

W 9G 
j 3n, 4Tr> 

'B 

?TP 
()dn{G 

Fe 

3 

dSE.G 
J 

,W 
dUj 

W 3G 
} PeDe. 

(10) 

(11) 

(12) 

Since E. is a known function over Fe, an integral equation for (^ .   can 

be derived as P -> Q eS„.  The iteration scheme mentioned here is 
3) equivalent to that proposed by Kitazawa '^ . 

Therefore, the boundary value problem (9) is the  fundamental one 

in the iterative scheme for the low speed wave making theory.  However, 

no attempts have been existed to solve it numerically.  For one reason, 

the problem involves the N-K problem as the  fundamental solution. 

Thus, without the numerical procedure for the N-K problem, we will not 

be able to go further into the investigation of the low speed theory. 

However, there may be many other tools of attacking the low speed 

theory than the iterative method mentioned here. 

Now we will derive the N-K problem from (9) 

into two components. 

Let's decompose W 

W WP WD 
+ <t>-" (13) 

'—Diffraction potential component 

'—Pressure potential component . 

They satisfy the following conditions, respectively, 
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,2.WP 

and 

(L)  V^(|)  =0 

(F)  F (})^ = E 

(R)  Radiation condition, 

(L)  V^c},^ = 0 

(F)  F (J,^ = 0 
„.WD     „.WP 

(H) M  =_ |i 
3n      3n 

(R)  Radiation condition. 

PeDe 

PeFe 

PeDe 

PeFe 

PeSg 

(14) 

(15) 

The problem for the diffraction component apparently defines the N-K 

problem recurringly.  Since the pressure potential problem can be given 

explicitly, if E function were known, it remains to solve the diffrac- 

tion potential problem that is the N-K problem. 

Let's consider the first iteration problem which is the most 

important step in the low speed theory.  Then, 

E(x,y) = D(x,y) = - <j,^ + N(x,y) . 

So the pressure potential will be decomposed into two components. 

^WP   ^WP , ^WP (16; 

•-Non linear correction term 

■-Linear term, 
where each potential satisfies the following free surface conditions, 

(F)  F ((> WP -4> 
R 
XX PeFe (17) 

and 
,WP (F)  F 4)JJ  = N(x,y)     PeFe , respectively.        (18) 

According to this decomposition of the pressure potential, the diffrac- 

tion potential is similarly devided into two components, such that, 

,WD 
<t> *L "^ *N (19) 

where each potential satisfies the following hull surface conditions 

(H) SiT^L 
WD    d    ,WP 

= - 9^L PeS B = (20) 

and 
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^^^  aH^N ~ " 9n^N     ^^^B ' respectively.        (21) 

It is easily seen that the higher order iteration includes terms only 

corresponding to the nonlinear correction term.  If we collect the 

linear terms, the original N-K problem recovers.  Thus, 

.NK _ ,R , ,WP , .WD ,„„. 
(j)  - 4" + 'J'L + ^L . (22) 

WP This potential satisfies (15) , in which <}>  must be replaced by x.  Then 

the total potential at the first step of the iteration becomes, 

.  _ ^ , ,NK , ,WP , .WD .^„. 
$^ = X + <J)  + *1N + *1N  • (23) 

With these decomposition of the potentials, we can classify the calcu- 

lation methods of the low speed theory.  As for the original N-K 

problem, it plays main role as the linear term in the low speed theory. 

And moreover the nonlinear correction term will lead to the general N-K 

problem.  Therefore the N-K problem is indispensable in the low speed 

theory. 

2. Solution Method of the N-K Problem 

So far, we have observed that the N-K problem is vital to the low 

speed theory.  And the general form of the N-K problem is defined as 
follows, 

(L)  V^cf) = 0 PeDe 

(F)  F (j) = 0 PeFe 

(H)  |i =-v(P)       PsSg 

(R)  Radiation condition. 

) (24) 

In order to derive the solution of the problem, we use similar decompo- 

sition to (22), and derive the successive potential which are summed up 

to the N-K solution.  Thus let 

The rigid wall potential satisfies (2), the pressure potential does (14) 

with the free surface condition (17).  And the diffraction potential 

defines again the N-K problem with the hull surface condition, 
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<") IH*S ■■ -i(p' = -yi PeS B (26) 

Thus repeating this procedure, we have for the N-K potential, 

* = ? {4.? + (j,^ }, (27) 

R      P where (f). and 4). satisfy the following conditions respectively. 

and 

(L) v'^l = 0 PeDe 

(F) 9 ^R 
3^i = 0 PeFe 

(H) 9 *R = -v^(P) PcSg 

(R) v*il -> 0 as P -^ 00 .* 

(L) v^4>^ = 0 PeDe 

(F) F 4>^ 9' AR 
-8x^*1 PeFe > 

(R) Radiation condit: Lon . 

(28) 

(29) 

The rigid wall potential problem (28) is a well posed one.  And the 

pressure potential problem (29) can be solved when the rigid wall po- 

tential is known over Fe. 

For simplicity, we want to solve the N-K problem by only the source 

singularity distribution method.  Then let's define the interior poten- 
R      P 

tials corresponding to 4). and 4). as follows, 

and 

(L) v'i>l =  0 

(F) 9  ,R    n 

(H) ,R  AR 
*i = *i 

(L) v'^l =  0 

(F) F 4)^ —f 2^^ 

PeDi 

PeFi 

PeSg 

PeDi 

PeFi 

(30) 

(31) 

Here it must be said that as the free surface condition on Fi is arbi- 

trary, so other forms of the condition are possible. 
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Now it is easily shown that the rigid wall potential can be given by 

the source distribution over S, B' 

■^i*^^^ == Znfff'iS(Q)aj^(Q)Gj^(P,Q) . 

where 'B 

^i - 9^i - 8H^i    Q^S 

(32) 

(33) 

And the Green function is i 

GR(P,Q) =-l/r - 1/r' . (34) 

Therefore aj^(Q) can be calculated by the Hess & Smith program with 

slight modifications. 

For the pressure potential, applying the Green's theorem, we have, 

(|)?(P) = -^ 
^1      4ir 

Fe+Fi 
*=' *lh^ - <4*I 1 

R    ,R -^{  i(t)dn((^?, - iJ;f,)G + dS(j)?- G + dS^\  G^} (35) 

Let's define such function G^ by analytical continuation on Fe+Fi that 

jY G^ = g— G and analytic in z<0. 

We can have for GTT, 

G„(P,Q) = ^ Re 

IT   » 

'W TT 
da ' , kexp{k(z+c)+ik(x-C)cos9+ik(y-n)sine}   .-.. 

vsec 9 

Thus G^^  satisfies (11).  Applying the Green's theorem with G^, to 

the surface integral terms in (35), and considering the Dirichlet 

condition on Sg of the rigid v;all potentials, (35) will be deformed as 
follows, 

*^P> =-5?vf^^°-Cx,n){|^J - |-|.J}G<P,Q) 

+ 
4TT dS^lr^i -M>G,(P.Q) . (37) 

Therefore, we can write with (32) and (37), 
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B 

<|)(P) = (27) = -zip^|d£a(Q)cos2(x,n)G + ^ 

L I 

with source distribution, 
00 

o =  I   a. 
0  J- 

Since the Kochin function derived from (38) becomes. 

dSa(Q)G(P,Q)   ,        (38) 

(39) 

m/r,            2AN        TT/A            2AN   _L     1    Ijn        2/       \     - iv s BC ^ 9 (£ COS G+fi s in6) IH(8,vsec'^0)   =  H(e,vsec^9)   + 7  <)d£cos   (x,n)ae ^^ ' ^ 57n 
(40) 

where H function is the usual Kochin function.  (40) is identical with 

the modified Kochin function of Gu&vel et al 

resistance is given by 

R^ =87:pv^ desec^e |lH(e,vsec^6) I 2 . 

-4iT 

4) Then the wave making 

(41) 

3. Singular Solution of the N-K Problem 

It is shown that the source distribution of the N-K problem does 

not have singular behavior because it is derived from well posed problem 

(28).  Therfore we may call the solution (38) as the least singular 

solution after Ursell 5) And it will be possible to introduce a singu- 

lar solution d) which satisfies the conditions, s 

(L)  V^(i). 

(F)  F <},. 

0 

0 

PeDe 

PeFe 

(R)  Radiation condition 

PeS B 

(42) 

Apparently ({)  is thought to be a solution which might be included in 

the N-K solution.  A possible solution for (42) will take the following 

form. 
2,,. „^^ rr^^r^x,   n^ (43) ^s^P) = -7^ ¥^   cos^(x,n)a^(Q)G(P,Q) 

which inherits the properties from the pressure potential.  This poten- 

tial satisfies the conditions, 
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(L)  V^(j)^ =0 PeDe 

(F)  F (f)^ =0 PeFe 

(R)  Radiation condition 

(44) 

In order for <^     to satisfy (42) , one more potential ^     should be intro- 

duced which is the solution of (15), that is the N-K problem.  There- 

fore the singular solution can be obtained if the line source distribu- 

tion a  is determined.  This source is very similar to that in (37) 

and arbitrary.  Since a  in (43) is a line sources on L, then if a  is 

added to a  of the least singular solution, the total source distribu- 

tion becomes discontinuous at L.  As far as the source distribution is 

concerned, we observe that the least singular N-K source (39) is con- 

tinuous on ST, while the singular N-K source o+a     is discontinuous at L, 

Moreover we have to impose the condition to determine the density of 

singular source.  Two choices are possible for such condition.  One is 

the request that the N-K solution should be least singular as advocated 

by Ursell, in this case a =0.  Another one is to use a  as one of the 

tools for the corrections for the nonlinear free surface condition. 

An attempt for the latter case has been made by Suzuki ^,   advocating 

a  should be related to the sinkage correction. s 

4. Numerical Calculation of the N-K Problem 

In order to calculate the source distribution a.   in (32) by the 

Hess 6c Smith  solver program, it is necessary to evaluate v. (P) in (28) 

at the control points of the element meshes on the hull.  This can be 

performed by evaluating the products between the directinal derivatives 

of the pressure potential and the direction cosines of the element 

meshes.  Green functions Gr, and Gf, are calculated from (34) and (35), 

respectively. 

The results of the iteration are shown in Fig.2 for both wave 

resistance and source distribution along upper most elements.  The 

zero th order sources coincide with the original Hess & Smith sources. 

Therfore the sources in Fig. 2 are for the wavy terms.  It is obvious 

from C  in the figure that the iteration converges at several steps of 

the iteration.  The rather rapid fluctuation is noticeable in the 
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sources around the midship. This comes from the coarse division of 

mesh panels near midship and the rapid fluctuation of the potential 

as seen in Fig. 3, 

The wave resistance is shown in Fig.4 compared with the results 

of the wave analysis conducted in the S.R.I..  The level of the 

calculation is about the same as that of the experiments which is usu- 

ally lower than the residual resistance.  As proved in the preceding 

section, the least singular N-K solution is a part of the solution of 

the low speed theory.  Therfore we may not expect that the least 

singular N-K solution gives good results over wide range of Froude 

number. 
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Fig. 1  Coordinate System 

 .' 1         1          1          I 
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Fig.4  Wave Resistance Coefficient 

for Wigley's Hull 

 1 1 1 T" 

SOURCE at  i-th ITERATION 
Fn= 0.313 
Z/l= 0.0--0.02 

I 

-as 0 0.5 
LONGITUDINAL   COORDINATE ,x/l 

Fig,   2     Wavy  Sources  and C^ at  each  Iteration 
for  Wigley's  Hull 

y/1 G(P,Q) xIO 
1/1--t.QSa,  SOURCE   POINT   Q =(-0.96375 .0.00598,-0.01 ),  Z = -0.01-L 

Fig. 3  Contour of Green Function, G(x,y,z) at Fn=0.35 
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TABLE 1  WAVE RESISTANCE COEFFICIENT 

H. Adachi & H. Takeshi / Neumann - Kelvin 

WIGLEY 

Fn C X 10^ w 

0.266 0.630 

0.289 1.313 

0.313 1.072 

0.333 0.962 

0.350 1.134 

0.378 1.497 

0.402 1.672 

0.452 2.841 

0.482 3.728 
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TABLE 2  WAVE ELEVATIONS ALONG WIGLEY'S HULL 

(Fore Part) 

H. Adachi & H. Takeshi / Neumann - Kelvin Problem 

\.    Fn 
0.266 0.313 0.350 0.402 0.452 0.482 

-1.0 Bow 

-0.9687 0.151 0.123 0.108 0.092 0.081 0.075 

-0.9062 0.205 0.168 0.145 0.121 0.102 0.093 

-0.8437 0.182 0.170 0.153 0.130 0.111 0.101 

-0.7812 0.114 0.141 0.138 0.124 0.108 0.099 

-0.7187 0.028 0.093 0.110 0.109 0.100 0.094 

-0.6562 -0.051 0.037 0.072 0.087 0.086 0.083 

-0.5937 -0.106 -0.018 0.029 0.060 0.069 0.070 

-0.5312 -0.133 -0.063 -0.013 0.031 0.049 0.053 

-0.4687 -0.137 -0.096 -0.050 0.001 0.027 0.035 

-0.4062 -0.127 -0.115 -0.078 -0.028 0.004 0.016 

-0.3437 -0.107 -0.123 -0.098 -0.053 -0.018 -0.004 

-0.2812 -0.081 -0.123 -0.110 -0.072 -0.039 -0.023 

-0.2187 -0.056 -0.116 -0.115 -0.087 -0.056 -0.040 

-0.1562 -0.041 -0.101 -0.116 -0.098 -0.070 -0.055 

-0.0937 -0.021 -0.088 -0.108 -0.105 -0.082 -0.067 

-0.0312 -0.008 -0.085 -0.098 -0.107 -0.092 -0.079 
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TABLE 2  WAVE ELEVATIONS ALONG WIGLEY'S HULL 
(Aft  Part) 

H. Adachi & H. Takeshi / Neumann - Kelvin Problem 

^\^ Fn 
0.266 0.313 0.350 0.402 0.452 0.482 

0.0312 -0.003 -0.062 -0.102 -0.098 -0.099 -0.089 

0.0937 -0.016 -0.033 -0.100 -0.093 -0.094 -0.095 

0.1562 -0.037 -0.034 -0.072 -0.104 -0.082 -0.088 

0.2187 -0.054 -0.014 -0.051 -0.112 -0.080 -0.072 

0.2812 -0.060 0.0 -0.053 -0.087 -0.102 -0.073 

0.3437 -0.064 0.003 -0.028 -0.076 -0.105 -0.098 

0.4062 -0.051 0.001 -0.012 -0.080 -0.086 -0.096 

0.4687 -0.031 -0.013 0.0 -0.066 -0.093 -0.083 

0.5312 -0.009 -0.016 0.019 -0.048 -0.093 -0.090 

0.5937 0.006 -0.020 0.026 -0.029 -0.085 -0.095 

0.6562 0.011 -0.018 0.020 -0.010 -0.087 -0.093 

0.7187 0.013 -0.008 0.011 0.019 -0.075 -0.092 

0.7812 0.030 0.017 -0.001 0.042 -0.050 -0.097 

0.8437 0.065 0.022 -0.009 0.055 -0.022 -0.087 

0.9062 0.119 0.042 0.017 0.048 0.019 -0.065 

0.9687 0.163 0.049 0.101 0.038 0.082 -0.001 

1.0 Stern 
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TABLE 3  WAVE RESISTANCE COEFFICIENT 

H. Adachi & H. Takeshi / Neumann - Kelvin 

SERIES 60 

Fn C^ * X 10^ 

0.220 0.648 

0.250 0.478 

0.280 2.253 

0.300 - 

0.320 2.141 

0.350 2.736 

*  C^ - 2Tr/70 [A* (9)] Me 
0 'W 
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TABLE 4  WAVE ELEVATIONS 
** 

ALONG THE HULL OF SERIES 6 0 

H. Adach i & H. Takeshi / Neumann - - Kelvin Problem 

0.220 0.250 0.280 0.320 0.350 

-1.0 Bow 

-0.9738 0.162 0.142 0.126 0.109 0.100 

-0.9250 0.216 0.189 0.165 0.139 0.123 

-0.8750 0.227 0.219 0.201 0.176 0.160 

-0.8250 0.200 0.216 0.212 0.194 0.180 

-0.7499 0.081 0.142 0.171 0.178 0.172 

-0.6499 -0.030 0.047 0.107 0.147 0.157 

-0.5500 -0.103 -0.051 0.020 0.089 0.117 

-0.4502 -0.141 -0.129 -0.075 0.007 0.052 

-0.3501 -0.172 -0.184 -0.162 -0.090 -0.035 

-0.2500 -0.179 -0.210 -0.216 -0.177 -0.127 

-0.1500 -0.140 -0.181 -0.236 -0.228 -0.197 

-0.0500 -0.125 -0.100 -0.165 -0.233 -0.227 

0.0500 -0.065 -0.048 -0.108 -0.168 -0.196 

0.1500 -0.034 -0.014 -0.009 -0.140 -0.163 

0.2500 -0.081 -0.026 -0.004 -0.060 -0.150 

0.3503 -0.107 -0.108 -0.011 -0.032 -0.090 

0.4517 -0.089 -0.131 -0.070 -0.025 -0.071 

0.5525 -0.020 -0.074 -0.089 -0.014 -0.044 

0.6530 0.099 0.018 -0.060 0.012 -0.016 

0.7516 0.147 0.114 -0.017 0.024 0.022 

0.8249 0.058 0.236 0.058 0.010 0.036 

0.8748 0.126 0.323 0.157 0.013 0.088 

0.9246 0.173 0.321 0.317 0.055 0.106 

0.9730 0.360 0.311 0.495 0.213 0.187 

1.0 Stern 

2   d **     ri(x/£)=-—-^—cj) at  the  null  point  of   upper 

most   elements(z/£=0.0--0.02665) 
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Wave Resistance Calculation by Modified Rankine Source Method 

by 

Kazuniro Mori*  and  Koichi Murata ** 

1.  Introduction 

The Rankine source method, where Rankine sources are distributed 

not only on the hull surface but also on the free surface, was 

first tried by Gadd(1976)[1]. At the last workshop Dawson(1979)[2] 

presented encouraging results. In his scheme the double-hull- 

linearized free surface condition is used together with the exact hull 

surface condition. 

Later Mori(1979)[3] pointed out that the free surface 

condition used in Dawson's computations is exactly same as Nakatake 

and et al's(1979)[4] for wall sided vessels, and that, though 

Nakatake[4] used the double-model hull surface condition, its results 

agree comparably well with Dawson's. 

According to these findings, Mori and Nishimoto(1981)[5] carried 

out calculations by the modified Rankine source method where the hull 

surface condition is satisfied only by the hull source and not always 

by the free surface source. By this modification, the computing time 

and storage are expected remarkably reduced. 

All the computations presented here are  carried  out by  the 

modified  Rankine source mtethod[5].  The wave-resistance is calculated 

not only by the hull pressure integration but also by  an  alternative 

method in terms of Gauss's theoremi. 

* Hiroshima University 
** Nihon Kaiji Kyokai 
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2. Brief Description of Method 

A right-handed Cartesian coordinate system is adopted as shown in 

Fig.l. 

We write the velocity vector q by   . . 

q - iU + Vet)  , •   ^ (1) 

where U is the uniform velocity and i is the unit vector in the 

x-direction. By Green's theorem, the velocity potential c)) is written 

as follows (see Appendix); 

H F 

+ ^//{*/(i + ^,) - |i(^ + i,)}dS    , (2) 4TI-'-' "^dn r  r'    3n r  r' ' ^■^> 
^0 

where    S^;hull   surface,  S^:free  surface, SQ =computing  boundary. 

OH,Op:source distributions on S^   and S^, n is the normal vector, and 

^,2 } = (x-x')' + (y-y')' + (z±z')' . ^^^ 

(x,y,z) is a fix point and (x',y',z') an integrating point.    In  the 

present modified  method a  is determined irrelevantly to the second 

and the third terms of Eq.(2); i.e., the sum of  the  first  terms  of 

Eqs.(l) and  (2)  realize the double m.odel flow field.  Now we denote 

it by q  and the second term of Eq. (2) by (J) . u w 

The third term of Eq.(2) can  be  omitted  approximately with  a 

proper  choice  of  differenciating  scheme    (Mori  and    Nishimoto 

(1980) [6]).  Then the double-hull-linearized free surface condition is 

written by 
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where the suffix £ denotes the differentiation  along  streamlines  of 

qQ,  and  g  is  the  gravity  acceleration.  The  only  unknown <i>^   is 
I 

determined in order to satisfy Eq.(4). 

The wave making resistance R^ and the sinkage force T  are  given 

by 

R  = -//pn^dS  ,  (5) T = // Pn dS  .      (6) 

where n^^ and n^ are the x- and z-components of the unit vector  on  Sj^ 

respectively, and P is the pressure. ' 

■I 

3. Computed Results 

Three proposed models are calculated: Wigley's parabolic hull, 

vertical cylinders with elliptical and lens like waterlines ; 

here the latter two are called EM-150 and LM-150 respectively. 

Fig. 2 shows the panel arrangements for V7igley model. The free 

surface is discretized by 318 panels (53x6) while the hull by 120 

(24x5). Fig.3 is the wave making resistance coefficient, where p is 

the density of fluid and S is the wetted surface. Experim.ental 

results are referred from Ju(1983)[7] which is obtained by subtracting 

of the viscous resistance by the wake survey measurements fromt the 

total resistance. Both the trim and the sinkage are fixed. The 

computed results agree well with the measured. Fig.4 shows the 

com^parisons of the wave profiles at 2y/L=0.13. Behind A.P. the 

computed results of Fn=0.289 are slightly larger than those measured. 

This fact corresponds to the resistance results; the computed 

resistance is larger than the measured around Fn=0.289. This may be 

attributed to the viscous effects. 
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Fig.5 is the wave resistance curves of EM-150 and LM-150 (solid 

lines). The panel arrangements on the free surface are almost the 

same as those for Wigley model. More precise panels are required for 

round-nosed models in order to follow rather sharp changes of 

velocity around fore stagnation points. It is found, however, that if 

the same precise panels are used around stern stagnation points, 

solutions become dissatisfactory and som.etimes diverge. This 

interesting fact may be because that such a sharp velocity change as 

the ideal flow is not realistic around the stern. A coarse panel 

arrangem.ent contributed to disguise it, while separations moderate it 

in real flow. Therefore a coarse size of panels is supposed to play a 

role of a kind of artificial viscosity in numerical computations. 

Fig.6 shows the wave contour of EM-150.  The numbers are 2^/L. 

Fig.7 is the total resistance curves of EM-200 and EM-125, which 

are elliptical waterplane cylinders with the beam length ratios 0.200 

and 0.125 respectively. They are calculated for comparisons with the 

measurements. The calculated wave resistance is added to the viscous 

resistance based on the Schoenherr friction line (the form factors K 

are 0.75 and 0.29 for EM-200 and EM-125 respectively). Both curves 

agree well with measurem.ents in low speed range, Fn<0.21, but poorly 

in higher range. This may be partially due to significant disturbance 

of the free surface which makes the double hull linearized free 

surface condition invalid. The viscous effects are still more 

possible; the observed and calculated stern flows in Mori and Ito 

(19 83)[8] are no more steady and the separations are quite  intensive. 
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4.   Further  Discussions 

4.1 Effects of sinkage 
■ 

Usually ships are subjected to sinkage forces and  trim moments. 

The effects of sinkage must be not small.  Suzuki(1979)[9] pointed out 

its importance. 

The sinkage force can be calculated by Eq.(6).  Assuming a static 

balance between the buoyant and  sinkage  forces,  the  sinkage  s  is 

approximately  given by 
1. 

s = -T/pgAw    , ^ (7) 

where Aw is the waterplane area. 

In Fig.8 a comparison is made for M-21, an Inuid model. The wave 

resistance is also calculated. The calculated results are both smaller 

than the measured. Under a 5%L sinkage condition, an iterative 

calculation is carried out at Fn= 0.289 and 0.35. About 20% increments 

are realized but they are still insufficient for the existing 

discrepancies between the calculated and the measured. 

Iterative calculations including both sinkage  and  trim may be 

useful for practical cases. i 

I    ■ 

4.2 Alternative method for resistance calculation  j 

The force F acting on the hull is written by  ' 

F = -p//wdS 1 (8) 
Q ' 

where W is a vector given by 

W = n{ |(U' -q') - pgL) + q(n-q)   .        , (9) 
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The first term is the pressure and the second is identically zero on 

the hull due to the hull surface condition. Applying Gauss's theorem 

to the domain Ve, surrounded by S , S and T. { = T,Q+T,-^+1.2 ), Eq.(8) is 

transformed into 

F = pSj/wdS + p//wdS - p///{|vq^ - q(V-q) - (q.V)q}dV ,  (IQ) 
'Si S V, 

where S. is a small hemisphere surrounding the Rankine source  on  the 

free  surface and S is the terminating plane shown in Fig.l. By virtue 

of the identity,  the integrand of the last term  can be  transformed 

into 
qx (Vxq)  + q(V-q)  • ^^^^ 

The first term is zero if the flow field is irrotational and the 

second also zero by the continuity condition.  Then we have 

F = pS//wdS + p//wdS . (12) 

In the first term of Eq.(12), we  split  the  velocity  into  two 

terms;    . 

where q is the velocity excluding the contribution by the source Op^ 
i 

at (x. , y. , 0) , the center of S . , and r^^ = (x-x. ) ^ + (y-y^) ^ + z^ . Sub- 

stituting Eq.(13) into Eq.(9), we have 

1 ^Fi'' ^Fi (14) 

0 

where  g.  is the normal component of q.  on S^^ .  By making the radius 

rQ infinitely small, the integration of the x-component of w over  S^ 

becomes 
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JJw^dS = ^u.a^. , . .^ , (15) 

where u. is the x-component of q..  ■ I       • 

On the other hand^ if Vg is taken wide enough, the second term of 

Eq.(12) is written by the integration only over E . Then its 

x-component R  is given by i 

\o ^ i-^-^^^i'+^i -"i ) ^S  +|pg/I^'dS, (16) 

where u^, v^, and w^ are disturbance velocity components excluding the 

uniform velocity. 

Finally we have 

R=R+-pSa.u. (17) 

The wave resistance obtained by Eq.(17) is shown by circles  with 

broken    lines in Figs.5 and 8. In the calculation of the second term 

the total source in the computing domain is assumed zero. The  results 

 they  are  called  here those by the free surface integration while 

those obtained by Eq.(5)  is  called    those  by  the ( hull) pressure 

integration     are  larger  by  20%  -  30%  than the hull pressure 

integration.    The   discrepancies  stand  out when  the  resistance 

increases. It can be pointed out for their reasons that the  computing 

domain  is  suspected not to be enough for the total source to be zero 

and also for  the flux through the lateral terminating  planes  to be 
1 

neglected.    In the present calculation, all the quantities on T-Q  are 

assumed  proportional to g/U z in the z-direction.    This  assumption 

may be less accurate when the wave making level gets large. 

Its   practical   advantages,  however,  are  immeasurable;  the 
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computing time reduces to less than one fifth if ten speeds are 

calculated at once, and the resistance computation is free from 

treating with complicated hull geometries. The reduction of computing 

time is attained by making use of numerical tables which have been 

prepared for the calculation of free surface source. 

5. Concluding Remarks 

Through the present calculations following remarks can be 

mentioned. 

1) The modified Rankine source method, where the hull surface 

condition is approximated by the double hull condition yields 

satisfactory results within a reasonable computing time. 

2) Effects of sinkage on the wave making resistance is appreciable. 

The iterative computation depicts them. 

3) An alternative method to calculate the resistance is proposed. 

Though the results are still not satisfactory, its numerical advantage 

is immeasurable. 
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Appendix 

We consider three subdomains of V^, V^ and V^ which are 

surrounded by surfaces ofSg, SQ' ^1' ^1' ^2' ^2' ^H' ^H ^^'^ ^F (see 

Fig.l). P(x,y,z) is a fix point in Vg. 

By applying Green's formula to the domain of V^, V^ and V. , we 

have 

^ii^ (♦l7;;7-7l7;;*)<*s. (A-2) 

^3(1) 

0 = - ff      (<!.• I—- - -^)   dS (A-3) 
n   M 

where <P and <^^ are the velocity potential defined in Ve and Vi 

respectively. The definition of the normal of n and n^ are shown in 

Fig.l. 

The integrands over T.-^ and ^i vanish when the upstream condition 

is imposed on <|> . Then the addition of Eqs.(A-l), (A-2) and (A-3) 

yields 

*■♦ <") = Ji.„ (♦ §7 7 - 7 f^) "S Mi^ (♦ IK 7 - 7 i) * 
0 _ 

*ll      (♦l77-7l^)''SMJi- (f|77-7l^)-S 
2 2 . 

(A-4) 
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It can be expected that the contributions from the  integrations  over 

and 2 2 ' the third and the fourth terms in Eq.(A-4), may cancel 

each other when T-2 ^^"^ ^2 ^^® taken deep enough. We assume that $ is 

equal to ^ at the symmetric points; then Eq.(A-4) can be written as 

follows:        ^ '   ■      I   " 

Eq.(A-5) can be expressed in terms of source singularities; putting (^ 

= cj). ,  3/8n (())-(|). )  = a  and a/gn ((|)-(j)) = a / we obtain Eq.(2) in the 

text. ! 
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X 

Fig. 1   Coordinate System and Svmbols 
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Numerical Calculation of Free Surface Flow 

by Means of Modified Rankine Source Method 

S. Ogiwara 

Ishikawajima-Harima Heavy Industries Co.,Ltd. ,Japan 

Abstract 

The free surface flow around a ship is calculated by the method using Rankine Source 

distribution over the hull surface and undisturbed free surface. The free surface condition is 

linearized based on the double nnodel flow and is applied at the undisturbed free surface, 

according to C.W.Dawson^^ The solution of wavy potential that satisfies the boundary 

condition of the hull surface and the free surface can be obtained by the iterative 

method ^^. 

The present method is applied to calculate the wave profile, pressure distribution over the 

hull surface and wave resistance for the Wigley hull and the strut like hull form. The 

calculated results for the Wigley hull are compared with measured values. For the strut like 

hull form, the calculation are performed for both cases when the hull is moving with the 

sharp end ahead and with the blunt end ahead. 

Nomenclature 

Akdjj^Bd'j; Matrix of the simultaneous equation for Rankine source 

on the free surface. 

Ship breadth. 

Finite difference of   Lk(^j). i 

Pressure coefficient on the hull surface. | 

Wave resistance coefficient =f^w/(-2;fU''L^). 

Ship draft. 

Finite difference operator. 

5 

Cp 
Cw 

d 
en 

Fn. Froude number = U/v^L  • 

Gravitational acceleration. 
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k 

L 
a 

LK(U") 

tic 

So 

s. 
u 

UVv 

Three dimensional form factor on flat plate friction. 

Wave number = ^/(J^ • 

Ship length. 

Half ship length = L/2 . 

Velocity in the direction of double model flow 

due to a source of unit strength. 

Number of panels on the hull surface of a double model. 

Number of panels on the free surface 

x-component of the normal vector on the hull surface 

Normal velocity on the hull surface due to a source of unit strength. 

Hull surface of a double model 

Undisturbed free surface 

Uniform velocity. 

Normal velocity on the hull surface. 

Cartesian coordinate system fixed to the hull 

Velocity potential of the double model flow 

Velocity potential of the free surface wave 

Rankine source strength on the surface of a double model 

Rankine source strength on the free surface 

Wave elevation 

1. Basic equations 

The coordinate system O-xyz is fixed to the hull with its origin on the midship section, the 

x-y plane coincides with the undisturbed free surface, the x-axis is in the direction of 

uniform flow, and the z-axis vertically upward. i 

The velocity potential is expressed by the sum of a double model velocity potential ^ and a 

potential ^ representing the effect of free surface wave, ^ 

The wavy potential d> satisfies the Laplace equation 

H) 

(^) 
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The velocity potential needs to satisfy the dynamical condition and kinematical condition on 

the free surface, 

Eliminating ^ from eqs.(3) and (^) 

ill/ L-^ .-k   /        ' -. 2. J-,     r       ■ .   ^1      ■    O  r^     -   ,-> ^-L       ~ >■ ,-'-S 

Substituting  eq.(l)  into  eq.{5),  the  following  linearized  free  surface  condition     can  be 

obtained '^ ia term of f,   by negrecting the term <^^^and assuming that eq.(5) holds for z=0, 

where   the subscript   I   means the derivative along the stream line of double model flow. 

(p- needs to satisfy the boundary condition on the hull surface , 

a A 

where n represents a normal to the hull surface in the outward direction. 

9o   ^""^   i^i   ^'"^ expressed by using Rankine sources distributed on the hull surface of a 

double model (So) and the undisturbed free surface (^S,) respectively, 

// to 
(?) 

/-'e 

■ ■■ 

r, = V(a-:^0^-(^-aT-z^ 
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The first term of the  right hand side of eq.(9) represents the potential of free waves and the 

'     second term the effect of waves on the hull surface. 

2) 
2. Method of numerical solution 

The hull surface of the double model is divided into Mo panels and the finite domain of the 

free surface into Mi panels, and the source intensity is supposed constant within each 

panel, d)  and (h   in the free surface condition, eq.(6), can be expressed as. 

Ml Mo 

M. Ho 

where 

% ■ TK 

CLK^J)= ^ gn Li^ (i-n.j) U =£>,!) <^'3) 

in which     Cfl   is an N-point upstream   difference operator.   Substituting eqs.(10),(ll) into 

eq.(6), the simultaneous linear equation for (j;'   and 4(J^ can be obtainted, 

Ml Mo 

34.4 — 



where 

AKttj)= 4^oC (l)CLKUj)i-Z<fe£(n<fe„(L)LK(lj)       fk=P.1)      (15) 

I   ■ 

Substituting eq.(9) into ea.f7). 
I 

Ml Mo 

, ( L = l> 2; •••^ Mo   on SP) 

where 

NK(U) = -   j[^(-f-)a3 (K.(?,\) (lg) 
A 5K 

The   iterative  method   is  used  to  obtain  the  solution  of  eqs.(l't) and(17).    As  the  first 

approximation, the source distribution over the hull surface can be represented  by  the 

double model solution Co  , 
■ 

Hence the simultaneous equation for seeking the first order approximation becomes from 

eq.(l't), 

^^' CC = 1,2,-..,M,   c^ Si) 

Mori and et air    have used eq.(20) to determine 6^ . The solution of the first approximation 

leaves the following flow penetrating across the hull surface, 

The hull surface condition is corrected by adding sources on the hull surface, 

4^ 
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This will approximatly satisfy the boundary condition expressed by eq.(17). Considering the 

velocity potential, A© created by A (To , the second order approximation of 0^ is obtained 

from the simultaneous equation 

J=| j=' 

(t-!,2,-vrli cniS,) 

3.    Numerical calculation 

The source distribution on the double body and the velocity distribution along streamlines on 

the still water surface are calculated by the method of Hess and Smith"^-^ . The division of 

the still water surface into panels is performed as follows. In the transverse direction, the 

free surface is divided by the streamlines of double model flow. For the division in 

longitudinal direction, the hyperbola is used, 

"jiD-J (x-^ii + 3/2)^~(^/2y (24-) 

where Xl are chosen so that the curves described by eq.(2^) intersect the load waterline at 

the points of division on the hull surface. The features of the free sur:;ace panel 

arrangement are shown in Fig.l . Number of panels on the hull surface and free surface are 

as follows, 
. \ 

Panel arrangement (half region) 

Hull surface Free surface 

Row X Line Row X Line 

Wigley hull 23  X   10 30  X  7 

Strut like hull 

Sharp end ahead 20   X   10 30   X   7 

Blunt end ahead 20   X   10 30  X  7 

In the finite difference approximation expressed by eq.(13), a four-point finite difference 
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operator is used for the fore part of the free surface and a two-point operator is used for 

the aft part so that the caluculated results of pressure distribution and wave profile on the 

hull surface become agree with the experimental results ^'. 

The pressure distribution on the hull surface can be expressed as follows by neglecting the 

higher order terms of  <p   , 

Similarly, the wave height 

Assuming that the pressure is constant within a hull surface panel, the wave resistance can 

be determined by , ' 

where A^L is the area of the surface panel and Hit is the x-component of the unit 

normal on a surface panel. 

4.   Numerical results 

kA    Wigley hull , 

The calculated value of pressure distribution are shown in Figs.2-a through 2-d in 

comparison with measured values, and tabulated in Table 1. The calculated values of wave 

profiles on the hull surface are shown in Fig.3 and in Table 'f-a .The wave resistance 

obtained by eq.(27) is shown in Fig.4 and Table 5 in comparison with the experimental 

values. • ■ ■■ 

The results of present calculation of pressure distributions and wave profiles show good 

agreement with the measured values especially in lower Froude number. The calculated bow 

wave heights are lower than those of measured value. The calculated wave resistances 

agree    comparatively    well    with    measured    values.       It    is    seen    that    the    calculated 
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wave resistance is somewhat heigher than the pressure resistance obtained from measured 

pressure distribution on the hull surface. The measured value are reproduced from the report 

of Cooperative Experiments on Wigley Parabolic Model in 3apan'^'' that will be presented to 

the 17th ITTC Resistance Committee on the request of the Comittee. 

1^.2    Strut like hull ' 

The numerical results of pressure distribution on the hull surface are shown in Figs.5-a 

through 5-e and tabulated in Table 2, when the hull is moving with the sharp end ahead. 

Wave profiles are shown in Fig.6 and tabulated in Table ^-b. 

The pressure distribution are shown in Figs.7-a through 7-e, and tabulated in Table 3, when 

the hull is moving with the blunt end ahead. Wave profiles are shown in Fig.8 and tabulated 

in Table '^-c. The wave resistances obtained by pressure integration over the hull surface 

are shown in Fig.9 and Table 5. 

In 197S, IHI Ship Model Basen conducted the resistance test of the mathematical model 

(MS521) similar to the strut like hull given in this workshop. Fig. 10 shows the waterline and 

midship section of MS521 comparing with that of the strut like hull. The wave resistance of 

MS521 obtained from resistance test is also shown in Fig. 10. The difference of wave 

resistance can be observed for the hull moving with the sharp end ahead and with the blunt 

end ahead. The numerical results of the strut like hull show the same trend as those of 

experiments and this result seems to be a significant feature of the present theory. 
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Fig. 1  Panel arrangement on the free surface 
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Fig. 2-b PreMure distribution on the surfaca of Wigley hull at Fn » 0.267 
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Catculatad 

Fig. 2-c Pressure distributioaon the surface of Wigley hull at Fn * 0.289 

Calculatsd 

Fig. 2-d Pressure distribution on the surface of Wigley hull at Fn •• 0.316 

351 



        Calculittd 

•    •     •     MMwred (L-e.Om) 

Fn - 0^60 
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Fig. 4 Comparison of wave resistance of Wigley hull 
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Fig. 5-b Preuure distribution on the surface of strut like hull at Fn " 0.213 
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Fig. 5d Pressure disUibution on the surface of strut like hull at Fn - 0.236 
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Fig. 5-e Pressure diitribution on the turfacs of strut like hull at Fn ' 0.250 
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Fig. 6 Wave profiles on the surface of strut like hull (sharp end ahead) 
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Fig. 7-a Pressure distribution on the surface of strut like hull at Fn - 0.204 

1.0 x/» 

1.0 x/i 

Fig. 7-b Preuure distribution on the surface of strut like hull at Fn - 0.213 
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Fig. 7-c Pressure distribution on the surface of strut like hull at Fn -^ 0.224 
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Fig. 7-d Pressure distribution on the surface of strut like hull at Fn - 0.236 
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Fig. 8 Wave profiles on the surface of strut like hull (blunt end ahead) 
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Table  1.   Calculated pressure coefficients  on  the hull 
surface  of Wigley  hull /" ■ 

Fn =   0.250 

VlSld .1200 .2000 .3600 .5200 .GSO0 -.8400 -.9200 

.9750 

.9250 

.S75a 

.8250 

.7500 

.6503 

.5533 

.4503 

.3500 

.S0O 

.1500 

.£500 

.2500 

.1500 

.2500 

.3503 

.4500 

.5500 

.6500 

.7500 

.8500 

.9250 

.9750 

2141 .2032 .1786 .1526 .1249 .0989 .HSSl 
1960 .17^ .1427 .1091 .0826 .0648 .0&16 
1850 .1590 .1163 .Rn^ .OFOS .0475 .&;55 
100? .0890 .fft69 .0462 .0323 .0242 .0264 
0114 .inoff, -.m?s -.OlM -.0133 -.oiew -.0050 
0707 -.e6S5 -.E£77 -.0660 -.e595 -.fFW, -.0435 
PRfift -.0851 -.0812 -.0775 -.0719 -.0F,?R -.0=iM 
0714 -.0703 -.fhfl? -.0648 -.EW1? -.0547 -.0514 
eB94 -.0393 -.0411 -.0413 -.0408 -.0376 -.0360 
0137 -.0158 -.0^M4 -.0249 -.0260 -.0256 -.0248 
0152 -.0180 -.0219 -.0254 -.0260 -.0256 -.0263 
0452 -.0454 -.e455 -.0421 -.0388 -.0356 -.0355 
0720 -.0697 -.E64a -.0572 -.0509 -.0454 -.0445 
0705 -.Offfl -.e635 -.05^ -.KbJl -.0479 -.O470 
pr-,sg -.0553 -.IZ546 -.0535 -.0497 -.0453 -.0432 
0463 -.0461 -.&4ai -.0476 -.0463 -.043 -.0403 
ewis -.0430 -.0454 -.0461 -.0447 -.0416 -.0393 
0377 -.0400 -.0428 -.0435 -.0457 -.0414 -.0371 
0339 -.03^ -.0421 -.0452  ■ -.CM 52 -.0439 -.0358 
0282 -.0297 -.0335 -.0388 -.0iyy -.0353 -.0291 
HZr34 -.0106 -.0143 -.0ia& -.0206 -.0152 -.0103 
0447 .0428 .0337 .0294 .0209 .0173 .0202 
1/J2 .1664 .1514 .1299 .1055 .0827 .0739 

Fn  =   0.267 

Vi vd   --^ -.2000 -.^WW -.5200 

-.9750 .2ayi .1991 .1766 .1525 
-.9250 .2039 .1571 .1517 .1179 
-.8750 .2162 .1865 .1385 .1025 
-.8250 .1374 .1239 .0973 .0720 
-.7533 .0489 .0412 .0267 .0151 
-.6500 -.0531 -.0535 -.0543 -.0545 
-.5500 -.0956 -.0942 -.0905 -.CS57 
-.4500 -.1043 -.1012 -.0952 -.0S77 
-.3503 -.0752 -.0724 -.06«a -.0640 
-.2S00 -.0279 -.0225 -.0299 -.0323 
-.15O0 .0368 .0028 -.0O40 -.0110 
-.0500 -.0334 -.0349 -.0135 -.0177 

.B500 -.C564 -.0549 -.0520 -.0465 

.1500 -.0843 -.esii -.0722 -.0648 

.2500 -.Vi/b9 -.crjr -.e694 -.0650 

.?=OT -.e570 -.0564 -.0574 -.0556 

.4500 -.0422 -.0438 -.0470 -.0481 

.■=Ffl3 -.eQ39 -.0365 -.&403 -.0438 

.£500 -.0310 -.0333 -.0398 -.0434 

.7503 -.0285 -.030^ -.0338 -.0390 

.SO0 -.0142 -.0150 -.0182 -.0217 
.9250 .0372 .0360 .0332 .0253 
.9750 .1684 .1621 .1480 .1273 

-.6800 .8400 -.3200 

.1261 .1007 .0900 

.iHoy .0722 .0687 

.0//1 .0613 .CESO 

.0541 .0425 .0430 

.0387 .0086 .0126 
-.eM94 -.0413 -.0346 
-.07SS -.0621 -.0612 
-.0793 -.0707 -.0662 
-.0596 -.0535 -.0537 
-.e320 -.0325 -.r296 
-.0147 -.0165 -.0180 
-.02O0 -.0207 -.0218 
-.0416 -.0376 -.E372 
-.0570 -.0504 -.0491 
-.ef=«H -.0527 -.0501 
-.0533 -.0483 -.0459 
-.0469 -.0437 -.eV314 
-.0447 -.04O7 -.c:.:.i 
-.04 38 -.039/ -.6347 
-.0402 -.0356 -.0294 
-.0233 -.0172 -.0122 

.0178 .0150 .0183 

.1035 .0815 .0728 
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Vable  1. continued     (Wigley  hull) 

-Fn  =   0.289 

VL  \vd .1200 -.2000 .3600 .5200 -.6800 .8400 .S200 

.9758 

.3250 

.E75£3 

.£250 

.7500 

.6508 

.5500 

.4500 

.3500 

.SOO 

.1500 

.0500 

.0500 

.1508 

.2500 

.3503 

.4500 

.5530 

.£500 

.7508 

.£500 

.a?50 

.9750 

196S .1884 .1695 .14S5 .1242 .lOGB .0896 
?oai .ly^/ .1589 .1260 .eegi .Bseo .0^5/ 
2515 .2181 .1647 .1255 .0371 .07ffi .0738 
185S .1701 .13S2 .1075 .0844 .Oft.'B .PRvJ 
1059 .0942 .0732 .05«1 .(M44 .03^ .0412 
0127 -.0157 -.VlXb -.0247 -.0231 -.0180 -.0125 
0831 -.0836 -.0830 -.0«0? -.0741 -.0635 -.e564 
1310 -.1275 -.1206 -.1106 -.0995 -.0879 -.0821 
1372 -.1309 -.1198 -.1074 -.0965 -.(Vr=B -.BS03 
0911 -.BS74 -.0799 -.0737 -.e666 -.0602 -.ItiM 
0219 -.0231 -.0244 -.0274 -.0283 -.0281 -.0291 
C312 .0244 .0107 .0013 -.0ZS3 -.0891 -.0112 
tVFiS .0023 -.0355 -.0097 -.0124 -.0137 -.0151 
045a -.0450 -.e413 -.0388 -.0349 -.0315 -.0314 
0748 -.0718 -.eB57 -.06O3 -.0533 -.0471 -.0445 
0?b9 -.0734 -.0703 -.063: -.£598 -.0531 -.0=iO? 
EB9S -.cfim -.0609 -.05*1 -.E562 -.0513 -.04S4 
040a -.0434 -.0468 -.0498 -.E5O0 -.0453 -.04O9 
02S-5 -.0313 -.e388 -.0431 -.eM39 -.0400 -.0349 
0233 -.E^^ -.0298 -.0359 -.0377 -.0334 -.0275 
0135 -.0144 -.0174 -.0208 -.0272 -.0161 -.0110 
eBi6 .0311 .0300 .fV-l-) .0166 .0144 .0181 
1F>?S .1573 .1447 .1251 .1024 .0810 .0728 

Fn 0.316 

Vi 2/^      -.1200 -.JWU -.3500 -.5200 -.FK*1 -.8402) -.9200 

-.9750 .1708 .!?.50 .1516 .1335 .1151 .0934 .0833 
-.9250 .2312 .1888 .1588 .1281 .1027 .0837 .0791 
-.8750 .2818 .2432 .ISSl .1473 .1168 .0954 .0890 
-.2250 .2371 ..,^201 .1842 .1483 .1197 .0981 .0335 
-.7500 .1787 .1631 .1358 .1125 .0344 .OS30 .0314 
-.65C0 .(7^.89 .0523 .0418 .0317 .0273 .0270 .0300 
-.'T'.OO -.0333 -.0370 -.041S -.0434 -.0412 -.0336 -.0278 
-.4500 -.1118 -.1115 -.1108 -.1045 -.0950 -.OR40 -.0782 
-.3500 -.1771 -.1704 -.15«^ -.1430 -.1281 -.1127 -.1062 
-.2500 -.1875 -.17^ -.1631 -.1427 -.1257 -.1113 -.1C&4 
-.1500 -.1332 -.1273 -.1131 -.1013 -.0901 -.0811 -.0787 
-.0500 -.0385 -.0390 -.O401 -.0396 -.0386 -.0373 -.K377 

.rFiT^-i .EM12 .0343 .0199 .0097 .0022 -.0022 -.nM7 

.1508 .0503 .04 37 .0317 .0201 .0126 .0(W1 .0054 

.2500 .0110 .0339 .0338 -.0020 -.0042 -.0049 -.0049 

.3500 -.0390 -.0372 -.0362 -.0340 -.0321 -.07R3 -.0266 

.av:A -.0598 -.0F.R1 -.0646 -.0600 -.0548 -.0492 -.0459 

.5500 -.0742 -.0742 -.0722 -.0702 -.e665 -.0591 -.ObJb 

.6500 -.0515 -.0F,2« -.2670 -.0578 -.0=,5? -.0583 -.E52a 

.7508 -.0431 -.0449 -.04SS -.0537 -.2538 -.0477 -.0406 

.SOO -.0216 -.0226 -.0257 -.02^2 -.0300 -.OA^H -.0171 

.9250 .0272 .0271 .0267 .0207 .0146 .0131 .0173 

.9750 .1634 .15R3 .1453 .1272 .1046 .0835 .0756 
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Table  2.     Calculated pressure  coefficients  on   the hull   surface 
of strut  like hull   (sharp end ahead) 

Fn  =  0.204 

Vi Vd -.mi3 -.2500 -.4167 -.=WTi -.75B0 -.9157 

-.9495    i .^Tfl .3149 .2737 .2155 .1238 -.1815 
-.8490 .C384 .0306 .0273 .ocgg -.cei7 -.2244 
-.7495 -.2077 -.1913 -.1/bb -.16W -.1545 -.2462 
-.6495 -.3646 -.3352 -.3065 -.27S3 -.2430 -.2401 
-.5495 -.3106 -.2297 -.2694 -.2444 -.2145 -.1870 
-.4495 -.1516 -. 14S -.1455 -.1384 -.1268 -.113?) 
-.3490 -.eu55 -.0505 -.Obbb -.B5S7 -.0593 -.0581 
-.2490 -.2375 -.0396 -.ewis -.0433 -.0437 -.0435 
-.0995 -.£504 -.04S3 -.0463 -.0443 -.CM22 -.0406 

.iiazM -.ES27 -.0329 -.0331 -.0333 -.EQ33 -.0333 

.T-^iVt -.euao -.0314 -.0326 -.0339 -.eB43 -.0343 

.3500 -.0446 -.0457 -.0465 -.0469 -.0461 -.0447 

.4500 -.0951 -.0934 -.0918 -.Ofifn -.0822 -.0743 

.5500 -.1623 -.1568 -.1518 -.1429 -.1297 -.1153 

.6505 -.2296 -.2194 -.2098 -.1953 -.1760 -.1628 

.7505 -.3020 -.2843 -.2678 -.2462 -.2215 -.2277 

.KWi -.2985 -.27S -.7=^3 -.2263 -.2396 -.2937 

.9?=i5    I -.2861 -.2516 -.2216 -.2010 -.1963 -.3!rb 

.9630    1 -.osai -.0723 -.0F*« -.0755 -.Vkfdb -.4100 

.SS75 .b/U .6671 .6525 .6214 .S347 -.1037 

Fn 

Vl     \Vd 

0.213 

-.0533 .2500 .4167 .5833 -.7500 .9157 

-.9495    I 
■.&190 
-.7495    ! 
-.6495    1 
■.5495    ] 
■.4495    I 
.3490    I 
. 2490    1 
.0995    j 
.1000    ! 
.ZOO    i 
.3500 
.4530 
.5500 
.6505 
.7505 
.8509 
.9255 
.9630 
.9675 

3646 .3246 .S13 .2216 .!??« -.1775 
tFes .04CT7 .csoo .0135 -.0176 -.:Z221 
2?)hl -.19C2 -.1744 -.1596 -.1548 -.2477 
3792 -.3473 -.3162 -. ?R"T0 -.2491 -.2452 
3319 -.3071 -.2834 -.2555 -.2231 -.1934 
1599 -. 1552 -.1511 -.1429 -.1304 -.1148 
eB37 -.04ee -.0479 -.0529 -.P549 -.0548 
0193 -.0247 -.0298 -.0339 -.0365 -.0380 
0514 -.0491 -.0469 -.0445 -.0420 -.04©4 
0394 -.03yB -.0384 -.0330 -.0372 -.0365 
e322 -.0333 -.eB43 -.0353 -.OJbi' -.0355 
EU24 -.0438 -.ewsi -.0457 -.04 53 -.0441 
0907 -.0297 -.0837 -.0858 -.0E03 -.0728 
1587 -.1537 -.1492 -.1409 -.128? -.1142 
■j:j-db -.21*1 -.2099 -. 19S4 -.1760 -.1629 
3070 -.2SS3 -.2715 -.24^ -.2239 -.2297 
3084 -.2822 -.2578 -.2316 -.2137 -.2971 
2yyy -.2619 -.■^i^iSS -.2252 -.1993 -.3808 
e94i -.0766 -.n^Tfl -.0763 -.1009 -.4122 
6783 .6673 .6524 .6209 .5336 -.1065 

Fn 0.224 

Vi Z/d.     --"^^ 
-.2500 -.4167 -.■"ATI -.7500 -.9157 

-.9495 .3510 .33S5 .^J^J .25«B .1360 -.1714 
-.8490 .C698 .0561 .0423 .0250 -.0105 -.2175 
-.7495 -.1990 -.1845 -.1699 -.1563 -.1525 -.2473 
-.6495 -.3940 -.3597 -.3259 -.2906 -.^^3 -.2507 
-.S495 -.^WT9 -.3312 -.3025 -.27(ZC -.2343 -.2019 
-.4495 -.1773 -.1698 -.1624 -.1515 -.1365 -.1132 
-.3490 -.0219 -.0306 -.es9i -.0456 -.&4S7 -.0496 
-.2490 .0149 .0344 -.0358 -.0142 -.eE06 -.0251 
-.0995 -.0349 -.0343 -.0335 -.0327 -.0319 -.0317 

.1000 -.EV49a -.0431 -.0463 -.0445 -.0427 -.0438 

.2500 -.0473 -.0465 -.0457 -.0451 -.CM39 -.0427 

.3500 -.0529 -.0530 -.e533 -.0531 -.e5i9 -.0499 

.4500 -.ee35 -.0936 -.0918 -.0892 -.0834 -.0739 

.5500 -.1567 -.1528 -.1490 -.1413 -.li?92 -.1154 

.6505 -.2279 -.21S -.^yy -.1960 -.1770 -.1640 

.7505 -.3116 -.2927 -.2^57 -.2530 -.2271 -.2323 

.FPiW -.3222 -.2937 -.2672 -.2391 -.2194 -.3019 

.9255 -.3211 -.2777 -.2386 -.2122 -.TMf, -.3S53 

.%30 -.10^ -.0843 -.0672 -.0800 -.1034 -.41S 

.SIS75 .6794 .5674 .6517 .6195 .5318 -.1102 
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Table   2.     continuecl (strut  like hull,   sharp end  ahead) 

Fn =   0.236 

-.4167 -.SflT) -.7'Tno V( 
-7 

-'6 -.EE33 -.2500 -.9167 

-.9495 .dOlB .3556 .3063 .2416 .1461 -.1620 
-.84 90 .0963 .0780 .0599 .0393 .0006 -.2esB 
-.7495 -.1S34 -.1713 -.1587 -. 1474 -. 1461 -.2434 
-.6495 -.4B37 -.3676 -.3316 -.2946 -.2586 -.2539 
-.5495 -.3934 -.3581 -.3239 -.2864 -.2464 -.2108 
-.4495 -.3567 -.1937 -.1813 -.1657 -.1467 -.1263 
-.3490 -.ci9a -.0277 -.£35/ -.0416 -.0444 -.0449 
-.2490 .E571 .0415 .0261 .0128 .0323 -.0055 
-.£895 .0121 .«Vvi .0O46 .OCGQ -.0335 -.0074 

.lUUU -.0518 -.0496 -.eM73 -.0449 -.0425 -.040? 

.2500 -.0775 -.0731 -.PF«=. -.f»V17 -.0607 -.OSffi 

.^R?10 -.ee95 -.(W=R -.0816 -.0773 -.0726 -.0676 

.4500 -.1205 -.1172 -.1140 -.1090 -.1010 -.0914 

.3500 -.1680 -.1642 -.1605 -.1524 -.1398 -.1253 

.6505 -.7?fl3 -.2202 -.2129 -.^Xl -.1818 -.1691 

.7505 1 -.3112 -.2934 -... .'5 -.^3bf -.2303 -.2335 

.flSTO) -.3338 -.3035 -.J'bb -.2439 -.2252 -.3067 

.9255 -.3498 -.2990 -.S24 -.2216 -.2112 -.3912 

.5638 1 -.1259 -.0^3 -.0758 -.0a5R -.1077 -.4209 

.9S75 i .6787 .66S .6499 .6175 .5291 -.113 

Pn =  0.250 

m -.0833 -.25eo .4167 -.5823 .7500 .9167 

.9495 

.8493 

.7495 

.6495   ! 

.5495 

.4495 

.3490 

.2490 

.0995 

.1000 

.2500 

.35ac 

.4500 

.SOO 

.6505 

.7505 

.8500 

.9255 

.9630 

.9875 

.4267 .jrro .3242 .2564 .15yb -.14S 

.1336 .1090 .0R51 .0534 .0174 -.1958 

.1555 -. 1474 -.1384 -.1306 -.1333 -.2344 

.ozws -.3675 -.3303 -.2930 -.'^D/^ -.253/ 

.42S2 -.3869 -.3465 -.3038 -.2596 -.2210 

.326 -.23221 -.2118 -.1831 -.1646 -.1392 

.0402 -.0440 -.0480 -.0499 -.0494 -.0472 

.0E79 .0701 .PTSPO .0362 .0233 .0130 

.OFi^ .0777 .0666 .0546 .CM31 .032/ 

.0237 -.OPT? -.0231 -.02S -.0229 -.E2S 

.1029 -.0957 -.0885 -.0818 -.0/53 -.0634 

.14S1 -. 1374 -.1267 -.1159 -.1054 -.0956 

.1S45 -.1747 -.1648 -.1532 -.1394 -.1246 

.2158 -.2080 -.AV.i -.1882 -.1716 -.1535 

.2485 -.24BM -.2327 -.2132 -.2001 -.1868 

.3393 -.2942 -.2806 -.2606 -.2370 -.2436 

.3341 -.3047 -.2777 -.2488 -.2287 -.3112 

.3785 -.3197 -.2ES2 -.2294 -.2167 -.3967 

.1571 -.1204 -.PJH67 -.0922 -.1122 -.4269 

.6762 .6ft75 .6468 .6144 .5253 -.X22& 
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Table  3.   Calculated pressure coefficients  on  the hull  surface 
of strut  like hull      (blunt  end  ahead) 

Fn  =  0.204 

a ^d 
.9S70 
.5620 
.9245 
.8490 
.7495 
.6495 
.5495 
.4495 
.3490 
.2490 
.0995 
.1030    ! 
.SZ© 
.3500    I 
.4500    1 
.5500    1 
.6505 
.7505 
.8500 
.9500 

-.0633 .2500 .4167 .5833 -.7500 -.9167 

7456 .7199 .^5? .6416 .5448 -.BS51 
1847 .1312 .0713 .0210 -.KJyb -.3719 
eD72 -.0460 -.0857 -.1163 -.1465 -.3448 
?Sf=,3 -.2413 -.2232 -.20aZ> -.19&4 -.2964 
5015 -.4j*y0 -.3780 -.3250 -.2786 -.2686 
3595 -.3247 -.2916 -.25F« -.2209 -.1948 
0F;=il -.0847 -.1021 -.1110 -.1096 -.1029 
eBi4 .0075 -.0164 -.03^ -.CM 35 -.0476 
eeio -.0572 -.0534 -.0506 -.eus5 -.0467 
1292 -.1129 -.0965 -.0S2S -.0718 -.0632 
e632 -.0«T7 -.PTVil -.05S -.eB20 -.0491 
aZ)64 -.0396 -.0131 -.0166 -.0196 -.r?7i 
0172 -.0207 -.0242 -.0271 -.K^yO -.0300 
(TS49 -.0535 -.e562 -.0558 -.eE-43 -.0516 
1471 -.1422 -.1374 -.I2y3 -.1172 -.1022 
2595 -.24^ -.2349 -.2167 -.iy<i2 -.1693 
3144 -.2946 -.2763 -.2524 -.Z.^bb -.2262 
2186 -.2010 -.1848 -.1679 -.1594 -.2482 
0266 -.07;VI -.0192 -.0222 -.0462 -.2430 
2769 .2tib4 .2313 .1861 .1006 -.2062 

Fn =  0.213 _ 

Vi ^/d -.0833 -.2500 -.4167 -.■iflTI -.7500 -.9167 

-.9870 .7542 .7271 .6908 .6458 .5487 -.0814 
-.5620 .2121 .1531 .0S77 .0331 -.0303 -.3650 
-.3245 .OL^J -.0195 -.6664 -.1012 -.1355 -. 3374 
-.8490 -.2286 -.2182 -.ii3b? -.1935 -.1879 -.^^.M 
-.7495 -.5099 -.4454 -.3817 -.3<ia!) -.2821 -.2/3/ 
-.6495 -.4048 -.3632 -.3236 -.2877 -.2419 -.2121 
-.5495 -.1183 -.1280 -.1390 -.1414 -.1340 -.1220 
-.4495 .0219 -.0310 -.0240 -.04CM -.CM 94 -.0526 
-.3433 -.0176 -.0202 -.0227 -.0262 -.0297 -.0326 
-.2490 -.0737 -.0672 -.0607 -.0553 -.2513 -.0483 
-.awb -.0925 -.0863 -.0R00 -.0733 -.PF.68 -.OftfS 

.10IA5 -.0290 -.0302 -.0314 -.0324 -.e035 -.0339 

.S03 -.0374 -.0125 -.0177 -.0?;^ -.klA3 -.0274 

.3500 -.0346 -.0381 -.0419 -.0440 -.0445 -.0440 

.4500 -.1320 -.1287 -.1258 -.11« -.108?! -.0951 

.5500 -.^56 -.2429 -.2311 -.2128 -.1887 -.1661 

.5505 -.i:?01 -.2993 -.2/95 -.2546 -.2268 -.2269 

.7505 -.2268 -.2078 -.1901 -.1730 -.1624 -.2510 

.£500 -.0298 -.0251 -.0218 -.0245 -.0482 -.2460 

.3=i00 .2784 .25CT .^^ .1871 .1010 -.2073 

VL 

Fn  =  0.224 

:% -.0633 -.2500 .4167 .5833 .7500 .9167 

.9870 

.9620 

.9245 

.8490 

.7495 

.6495 

.5495 

.4495 

.3490 

.2490 

.0995 

.1000 

.2500 

.3500 

.4500 

.5500 

.6535 

.7535 

.£500 

.9500 

7657 . /3fa9 .6982 .6517 .3541 -.0751 
2509 .1837 .1100 .0499 -.0170 -.3547 
e695 .0169 -.0877 -.0796 -.1183 -.3255 
1869 -.1847 -.1792 -.1734 -.1733 -.2SZ7 
3095 -.4439 -.3788 -.3251 -.2807 -.2742 
4538 -.4033 -.3554 -.3371 -.2612 -.2273 
1731 -.1745 -.1782 -.1734 -.1593 -.1417 
02)85 -.0142 -.0370 -.0517 -.2584 -.0532 
0092 .00=3 .0018 -.0038 -.lowy -.0135 
0082 .0055 .0326 -.0021 -.0070 -.0118 
2526 -.0516 -.0504 -.0487 -.0463 -.0441 
0799 -.072 -.0707 -.0656 -.0612 -.0569 
0480 -.04sa -.0182 -.0484 -.0480 -.0472 
04S0 -.0511 -.0544 -.0561 -.ersft? -.0548 
1277 -.1269 -.1262 -.1215 -.1122 -.0933 
2522 -.2411 -.-.^Ml -.2140 -.1907 -.1687 
3290 -.3071 -.7Rh7 -.2609 -.Zi24 -.2318 
2427 -.2216 -.2017 -.1816 -.1707 -.2584 
0^95 -.0339 -.0293 -.0312 -.0545 -.2529 
2777 .2557 .2315 .1835 .0990 -.2112 

364 



Table o.      continuBil   (strut  like hull,   blunt  end  ahead) 

Fn  =  0. 236 

-.4167 -.ViTt -.7500 Vi 7d    -"^^ -.2500 -.9167 . 

-.9S70 .7794 .7489 .7072 .6589 .sie -.0688 
-.9620 .2995 .22 IS .1372 .0706 -.0005 -.3412 
-.3245 .123S .0613 -.0329 -.057^ -.0977 -.3093 
-.SAsa -.1368 -.1435 -.1454 -.1466 -.1531 -.2686 
-.7495 -.4984 -.4334 -.^79 -.3154 -.2734 -.2702 
-.6495 -.4991 -.4396 -.3829 -.3274 -.2765 -.2391 
-.5495 -.2347 -.2258 -.2138 -.2064 -.1849 -.1611 
-.4495 -.C537B -.B3C2 -.EB3& -.0671 -.0713 -.0691 
-.3490 .0191 .0156 .0120 .0070 .0315 -.0037 
-.2490 .e£13 .0590 .0569 .0491 .0393 .0290 
-.0995 .£593 .0477 .0359 .0243 .0145 .0065 

. 1000 -.1131 -.1045 -.re60 -.0868 -.0782 -.0707 

.2500 -.1330 -.1770 -.1110 -.1C16 -.0929 -.0853 .^TS00 -.1161 -.1112 -.1077 -.1025 -.0965 -.0899 

.4508 -.15 (-5 -.1561 -.1545 -.1486 -.1376 -.1233 .'=FiCiri -.2575 -.2491 -.2411 -.2262 -.3341 -.1825 

.6505 -.3363 -.3152 -.2958 -.2706 -.2427 -.2423 

.7505 -.2617 -.738R -.2170 -.1949 -.1878 -.2695 

.fflO0 -.£561 -.0493 -.0428 -.0431 -.(^57 -.2641 

.<?T0f) ..dl^ .25C5 .2267 .IfWR .0935 -.2187 

M 
Fn 0.250 

Vd  -■ 0833 -.2500 -.4167 -.5833 .7500 -.9167 

.9870 

.9620 

.9245 

.S490 

.7495 

.6495 

.5495 

.4495 

.3490 

.2490 

.0995 

.1033 

.2500 

i4500 
.3500 
.6505 
.7505 
.S00 
.5500 

7968 .7638 .7183 .6675 .5692 -.0599 
3663 .2720 .1709 .Oybb .0192 -.3-251 
ly^y .1166 .0106 -.0194 -.0721 -.2897 
0764 -.0935 -.1036 -.1138 -.1279 -.2511 
4fil5 -.4167 -.3516 -.3012 -.7676 -.2638 
5455 -.4769 -.4115 -.3488 -.2928 -.2576 
3133 -.2918 -.2741 -.2495 -.2190 -.1881 
0442 -.0650 -.0867 -.0371 -.0975 -.0310 
0775 .0140 .0054 -.0010 -.005/ -.OtVB 
e540 .0615 .KB 90 .tK70 .eE98 .0501 
1775 .1553 .\i^i .1093 .PFKl .0655 
eB99 -.0663 -.e629 -.esaa -.0540 -.0499 
2332 -.1S14 -.1623 -.1450 -.1295 -.1158 
21 S3 -.2011 -.1843 -.1672 -.1508 -.1358 
2351 -.2259 -.2166 -.2032 -.1855 -.1649 
2S90 -.?ai?f7 -.2/27 -.2569 -.2336 -.2100 
3415 -.3235 -.3P)h« -.2838 -.2573 -.2576 
2731 -.24^ -.2279 -.203 -.1940 -.2811 
0/A -.0648 -.PfVV, -.V-i~Vi -.0771 -.2/i« 
2647 .2430 .2199 .1744 .0866 -■??fi? 
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Table  4-a Wave profiles  on   the hull   surface   (Wigley  hull) 

Fn=0.250 Fn=0.267 Fn=0.289 Fn=0.316      \ 

975 \          .0144 .0159 .0184 .0185 

925 .0158 .0182 .0215 .0225 

875 .0139 .0185 .0220 .0275 

825 .0073 .0113 .0185 .0263 

750 .0012 .0041 .0103 .0203 

650 -.0047 -.0039 -.0008 .0070 

550 -.0057 -.0071 -.0072 -.0032 

450 -.0046 -.0079 -.0115 -.0115 

350 -.0025 -.0057 -.0123 -.0188 

250 -.0007 -.0019 -.0081 -.0200 

150 -.0007 .0009 -.0017 -.0141 

050 -.0028 .0005 .0035 -.0037 

050 -.0047 -.0042 .0009 .0051 

150 -.0046 -.0064 -.0039       : .0060 

250 -.0036 -.0056 -.0066       \ .0014 

350 -.0029 -.0041 -.0067 -.0042 

450 -.0025 -.0029 -.0050 -.0073 

550        ■ -.0022 -.0022 -.0031 -.0075 

650 -.0020        \ -.0020 -.0021        \ -.0060 

750         1 
1 

-.0017        : -.0019 -.0018        \ -.0042 

550 -.0005 -.0010 -.0011 -.0021 

925        \ .0029                 ; .0028       ; 
j 

.0027 .0027 

975        \ .0114        [ .0126       \ .0142 .0170 
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Table  4-b.      Wave profiles  on   the hull   surface   (Strut  like hull,   sharp end ahead) 

Fn=0.204 Fn=0.213 Fn=0.224 Fn=0.236 Fn=0.250 

-.950 .0155 .0174 .0202 .0236 .0282 

-.850 .0018 .0025 .0038 .0059 .0091 

-.750 -.0090 -.0097 -.0104 -.0106 -.0100 

-.650 -.0158 -.0179 -.0206 -.0235 -.0264 

-.550 -.0134 -.0156 -.0189 -.0229 -.0281 

-.450 -.0064 -.0074 -.0091 -.0119 -.0164 

-.350 -.0018 -.0014 -.0009 -.0009 -.0024 

-.250 -.0015 -.0008 .0010 .0036 .0060 

-.100 -.0021 -.0024 -.0018 .0008 .0059 

.100 -.0014 -.0018 -.0025 -.0029 -.0015 

.250 -.0012 -.0014 -.0024 -.0044 -.0067 

.350 -.0018 -.0019 -.0026 -.0051 -.0096 

.450 -.0040 -.0041 -.0047 -.0068 -.0118 

.550 -.0069 -.0073 -.0080 -.0095 -.0137 

.650 -.0098 -.0106 -.0117 -.0129 -.0158 

.750 -.0129 -.0144 -.0161 -.0178 -.0198 

.850 -.0129 -.0146 -.0169 -.0194 -.0218 

.926 -.0126 -.0145 -.0172 -.0209 -.0255 

.963 -.0040 -.0047 -.0058 -.0077 -.0110 

.987 .0284 .0310 .0344 .0382 .0427 
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Table  4-c.      Wave profiles on  the hull  surface   (Strut  like hull,  blunt  end ahead) 

(  
1 

Fn=0.204 Fn=0.213      ; Fn=0.224 Fn=0.236 
1 

Fn=0.250    ! 

-.987 .0316 

i 
i 

.0348         : 
1 

.0391 .0443 

1 

.0508      i 
j 

-.962 .0088 .0110 .0143 .0188 .0258 

-.925 .0005 .0022        \ 
1 

.0048 .0086 .0144 

-.850 -.0111 -.0106 -.0094 -.0074 -.0042 

-.750 -.0222 -.0246        \ -.0272 -.0296 -.0323 

-.650 -.0157 -.0193 -.0241 -.0295 -.0363 

-.550 -.0025 -.0051 -.0087 -.0133 -.0203 
I 

-.450 .0018 .0015 .0010 .0003 -.0021 

-.350 -.0026 -.0007 .0006 .0012 .0017      1 

-.250 -.0057 -.0035 .0005 .0035 .0031      1 
( 

-.100 -.0027 -.0045 -.0027 .0036 .0118       \ 
1 

.100 -.0002 -.0013 -.0041 -.0065 -.0045      \ 

.250 -.0006 -.0002 -.0024 -.0077 -.0131       \ 

.350 -.0023 : -.0015 -.0023 -.0066 -.0142 

.450 -.0062 \      -.0061 -.0064 -.0088 -.0150      ] 

.550 -.0111 \      -.0119 -.0129 -.0146 -.0183      \ 

.650 -.0135 \      -.0150 -.0171 -.0193 ■     -.0219      I 

.750 -.0095 j  -.0107 -.0127 \      -.0152 -.0178 

.850 -.0012 j  -.0015 -.0021 j -.0033 -.0049      \ 

.950 .0120 .0131 .0145 

•  

.0158 .0172      \ 
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Table  5.     Calculated wave, resistance  coefficients 

Wigley hull 

Fn KaL Cw X  10^ 

0.250 16 0.1269 

0.267 14 0.1518 

0.289 12 0.2034 

0.316 10 0.3289 

Strut like hull 

Fn Kp-L 

Cw X 103 

Sharp end ahead Blunt  end ahead 

0.204 24 0.3807 0.3303 

0.213 22 0.4508 0.4246 

0.224 20 0.5717 0.6216 

0.236 18 0.7568 0.9209 

0.250 16 1.0270 1.2850 
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THE XYZ FREE SURFACE PROGRAM AND ITS APPLICATION 

TO TRANSOM-STERN SHIPS WITH BOW DOMES 

Bill H. Cheng 
Janet S. Dean 
John L. Jayne 

David W. Taylor Naval Ship Research and Development Center 
Bethesda, Maryland 20084 

INTRODUCTION 

The XYZ Free Surface Program (XYZFS) is a versatile ship design tool which 

can be used to predict the wave resistance characteristics of a wide variety of 

hull forms.  XYZFS can analyze surface ships with cruiser or transom sterns as 

well as submerged vehicles.  The program uses a Rankine source panel method to 

compute three-dimensional, steady potential flow about ship hulls.  XYZFS calcu- 

lates the local flow field, wave resistance and wave patterns for ships moving at 

a constant speed corresponding to a Froude number of 0.2 to 0.6. . An estimate of 

residual resistance can also be obtained.  The program is designed to allow cal- 

culations both for ships which are held fixed and for ships which are allowed to 

sink and trim in response to hydrodynamic forces. 

XYZFS was originally developed by the late Charles W. Dawson at the David W. 

Taylor Naval Ship Research and Development Center (DTNSRDC).  He successfully 

applied the original version of the program to a number of ship hulls including 

all five of the test cases for the 1979 Workshop on Ship Wave Resistance Compu- 

tations.^  These workshop cases consisted of the high-speed Athena transom-stern 

hull, the Wigley parabolic hull, the Inuid hull, the Series 60 cruiser-stern hull, 

and the low-speed HSVA tanker.  XYZFS was one of the most successful programs for 

predicting wave resistance at the 1979 Workshop.  Its flexibility and ease of 

use contributed to this success, but three other desirable features were most 

responsible for its accuracy as a ship design tool.  First, XYZFS satisfies the 

Neumann boundary condition exactly on the ship's hull to include what naval 

architects refer to as the sheltering effect.  By contrast classical thin-ship 

theory satisfies the boundary condition on the ship's centerline.  Second, XYZFS 

takes into account the non-uniform flow generated by the ship hull by using a 
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double-model linearization of the free-surface boundary condition.  Finally, 

some weakly nonlinear effects are retained in the free-surface boundary con- 

dition.  In addition to the papers by Dawson,2>3 reports by Gadd,^'^ Tulin,^'' 

Dean," Yeung," and Mori-'-O have covered the program and its methodology. 

Dawson's free-surface boundary condition was also studied by Katazawa, l-*^ Mori,!^ 

and Baba. '■^ 

The present authors have further developed XYZFS by making substantial 

improvements to its computational techniques.  A new method for satisfying 

the transom boundary conditions has resulted in a more realistic model of the 

physical problem and an improved prediction of wave resistance.  A better proce- 

dure for calculating bow and stern heights has led to a closer agreement with 

experimental values.  Conversion of the program to a Cray-lS supercomputer has 

allowed a greater r^^olution of the hull and free-surface geometries and a new 

capability for hulls with bow domes.  A direct matrix solver written by Thomas 

Jordan of the Los Alamos National Laboratory has helped to make the Cray version 

of the program extremely efficient.  The enhanced version of XYZFS has been 

applied to many additional hull forms.  In the current study, the program is 

used to evaluate the relative merits of two hull designs at various speeds.  The 

results illustrate the usefulness of XYZFS for practical ship design problems 

involving transom-stern hulls with bow domes. 

COMPUTATIONAL PROCEDURE 

The application of XYZFS to a specific ship hull begins with the selection 

of an appropriate geometric modeling technique.  For instance, a ship's blueprint 

can be digitized by using an interactive graphics system and a digitizing board 

to create the x, y, z coordinates of points on the hull.  This hull geometry data 

and a few parameters are all that is then required to begin the calculation.  The 

program will automatically take care of the panelling of the free surface and the 

repositioning of the ship for sinkage and trim.  Note that only half of the ship 

and free surface are modeled since a plane of symmetry exists about the ship's 

centerline (y = 0). 

The XYZFS calculation begins by using the input hull geometry to perform a 

surface representation of the ship hull.  Flat, four-sided panels are constructed 

from the ship coordinate data to closely approximate the actual hull geometry. 
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Each panel is characterized by Its centroid, normal vector, and surface area. 

The influence coefficients are then calculated as a function of panel geometry 

and the distance between panel centroids.  This procedure is based on the panel 

method developed by Hess and Smith.^^ 

The double-model problem, consisting of the flow of an infinite fluid 

about the hull and its reflection above a rigid free surface, is then solved as 

a boundary-value problem with a matrix formulation.  The double-model source 

densities are found by using Jordan's direct matrix solver and are used to cal- 

culate the double-model velocity vectors at the free surface.  A Runge-Kutta 

method is then used to trace double-model streamlines based on these velocity 

vectors.  This technique insures that the streamlines will go around the ship 

hull rather than penetrate it.  Free-surface panels are constructed by using 

these double-model streamlines as one coordinate of a two-dimensional grid. 

Smaller panels can be placed near the hull, resulting in computational savings 

through the use of a variable grid. 

XYZFS next proceeds to solve the "complete" problem of flow about the hull 

and free surface with wave effects included.  A new boundary-value problem for 

the total velocity potential is set up as a matrix formulation using the free- 

surface boundary condition and four-point upstream finite-difference operator 

derived by Dawson.2  Jordan's direct matrix solver is again used to calculate 

the source densities.  The system of equations being solved is extremely large 

since its order is the total number of hull and free-surface panels which can be 

as high as 900. 

The velocity vectors and pressures are then calculated from the source 

densities, and an integration of the pressure along the hull surface completes 

the calculation of the wave resistance coefficient.  The wave profiles are found 

by computing the wave elevation from the dynamic boundary condition.  A predic- 

tion of residual resistance is made by approximating viscous effects according to 

the 1957 ITTC formula and a modification of Granville's form factor.-^ 

The preceeding calculations give the results for the fixed model case.  The 

sinkage force and trim moment are also calculated and used to predict the bow and 

stern levels which the ship would experience if it were left free to sink and trim. 

These bow and stern levels can then be used to reposition the ship geometry data 

to correspond to the sunk and trimmed ship.  The new hull is then analyzed in the 
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same way as for the fixed case to determine the wave resistance and local flow 

field for the sunk and trimmed ship.  The wave resistance prediction for the sunk 

and trimmed hull is not based on a simple correction to the fixed hull results, 

but rather is based on a complete calculation for the sunk and trimmed hull 

geometry. 

TRANSOM-STERN METHODOLOGY ' 

The last section discussed the XYZFS computational procedure in general. 

This section presents special considerations for transom-stern hulls.  Transom 

sterns have received considerable attention in the design of high-speed naval 

ships because of the potential for energy conservation and low drag at high 

Froude numbers. 

Saunders^^ noticed that a depression in the free surface occurs behind a 

transom-stern hull and forms a phantom afterbody to yield a lower effective Froude 

number.  This implies that the flow detaches smoothly at the edge of the transom 

for high speeds and no recirculating flow appears in the stern region.  In their 

numerical computations, Gadd^ and Chang^^ simulate the surface depression by adding 

a tapering extension to close the body behind the transom.  Their wave resistance 

calculations consist of contributions from the hull up to the transom location, 

excluding the tapering extension.  Instead of using a tapering extension as a 

phantom afterbody, Yim^' models the edge of a transom stern by a line sink where 

the source density is assumed to be a linear function of transom depth.  Dawson-^ 

enforced the condition of flow detachment by requiring that all water flowing 

across the second column of panels from the transom must pass through the transom 

edge and then be absorbed by the free-surface panels.  A two-point extrapolation 

formula was used to impose this constraint at the edge of the transom.  According 

to Dawson,3 "the source density on the (free-surface) panels next to the transom 

is determined so that the pressure at the edge of the transom is approximately zero 

(atmospheric)".  Unfortunately, this original transom boundary condition sometimes 

caused difficulty in the XYZFS computations.  For example, Wilson and Thomason^^ 

report cases of unreasonably high wave resistance values at certain Froude numbers. 

Whenever this wave resistance anomaly occurred, high velocities and large jumps in 

source density were detected directly behind the transom and the pressure in that 

region was far from atmospheric. 
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Accordingly a new method for satisfying the transom boundary condition has 

been Incorporated into the current version of the XYZFS Program.  The pressure at 

the edge of the transom is forced to be atmospheric identically from the outset, 

while the flow leaving the transom edge is assumed to be tangential to the ship 

hull in a way consistent with the Neumann boundary condition on the hull.  It can 

be shown that the velocity vector at the transom edge is completely determined a 

priori, depends explicitly on Froude number and transom depth, and is implic- 

itly a function of the transom stern geometry (e.g., buttock angle, deadrise angle, 

and run angle).  On the other hand, the source density on the free-surface panels 

behind the transom is determined only after the complete problem is solved. 

This new approach to the boundary conditions gives an excellent prediction of 

wave resistance and wave profile for transom stern flows, as shown in the follow- 

ing section. 

RESULTS 

The present study concerns the relative merits of two alternate hull forms 

over a speed range of Interest to the Navy.  The two alternate designs, designated 

as Hull A and Hull B, represent two concepts for the stern design.  Hull B has a 

smaller transom area and transom Immersion than Hull A.  Hull A and Hull B have 

identical bow domes.  For the XYZFS calculations, a total of 660 panels have been 

used to model the hull and free surface.  Of these, 192 panels (8 panels at each 

of 24 stations) have been placed on the hull, 100 panels (10 panels at each of 10 

stations) have been added for the bow dome, 320 panels (8 panels at each of 40 

stations) have been used for the main portion of the free surface, and 48 panels 

in an 8 by 6 array have been placed on a special portion of the free surface 

immediately behind the transom stern.  This panelling arrangement encompasses a 

computational domain which extends 1/2 of a ship's length forward and aft of the 

hull and 3/8 of a ship's length to each side.  Figure 1 illustrates the XYZFS 

panelling of Hull A by showing a side view of the foirward fifth of the hull with 

the attached bow dome.  Notice that smaller panels are concentrated near the 

design water line in order to resolve the wave-like motion.  For consistency, the 

spacing and location of the panels have been chosen to be virtually identical for 

the two hulls being studied. 

Table 1 gives the computed wave resistance coefficients for Hull A and Hull 

B.  The Froude number range is from 0.2 5 to 0.50 with an increment of 0.05.  The 
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wave resistance values corresponding to fixed cases are presented in the first two 

columns.  Similar predictions are given in a parallel study by von Kerczek, Scragg 

and Stern^^ using a slender-body theory.  Unfortunately, wave-cut analysis data are 

not available for comparison.  The wave resistance values corresponding to sunk and 

trimmed cases are computed after repositioning the ship according to the predic- 

tions of bow and stern levels as specified in Table 2. 

A comparison with corresponding experimental values^^ of bow and stern levels 

is displayed in Figure 2.  Notice the excellent agreement between computed and 

experimental values below Froude number 0.40.  An important feature of this com- 

parison is that the cross-over points, where the trim coefficient is zero, are 

accurately predicted.  Table 2 presents the sinkage and trim coefficients derived 

from the bow and stern levels.  The computation predicts that for both ships the 

bow trims down for lower Froude numbers and the bow trims up for higher Froude 

numbers. 

Table 3 gives the results of residual resistance coefficients C^ for Hull A 

and Hull B.  The partial form factor Kp, the ratio of wetted surface area, and 

frictional resistance based on the 1957 ITTC line are also tabulated.  A compari- 

son of the computed residual resistance coefficient with the corresponding experi- 

mental value is displayed in Figure 3.  The agreement is remarkable.  In the case 

of Hull A, the computed values of Cj^ slightly underestimate the experimental 

values for Froude numbers above 0.35.  At lower speeds the XYZFS results over- 

estimate the experimental values.  In the case of Hull B, the agreement above 

Froude number 0.35 is almost exact, while the computed values overshoot at lower 

speeds.  Based on this comparison, one may conclude that the agreement above 7-^  = 

0.35 is excellent while the agreement at lower Froude numbers is encouraging. 

This conclusion may be related to the assumption of flow breaking clean at the 

transom edge at high Froude numbers.  In the low Froude number range (F^ < 0.30) 

the transom may not clear the water.  Additional work is needed to improve these 

results.  Figure 4 gives the relative difference in C-g^  between Hull A and Hull B 

as a function of Froude number.  The cross-over points are about 0.253 and 0.353, 

implying that Hull A performs better in terms of resistance consideration above 

Froude number 0.353 and that Hull B performs better between the range F^ = 0.253 

and Fj^ = 0.353.  The corresponding cross-over points in the experimental data are 

0.188 and 0.382. 
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Table 4 gives the computed wave profiles along the hull from the bow to 

stern.  Figure 5 gives a visual display of the same data in graphical form.  Note 

that the XYZFS predictions show that for ships with bow domes there is a kink in 

the bow wave system, a fact confirmed by experiments.^0 At Froude numbers under 

0.40, the kink may be below the mean water line (z = 0 line), while at high 

Froude numbers the kink is above this level.  On the other hand, as the Froude 

number increases, the wave trough behind the bow wave becomes deeper and the 

maximum amplitude moves toward the stern, indicating longer wave lengths.  For 

all fixed cases, the wave profiles directly at the stern always recover to a 

small but positive value above the mean level.  For sunk and trimmed cases at 

high Froude numbers, the stern is located significantly below the mean water 

level, and the wave profiles do not recover to a positive value at the stern. 

Note that at the stern the amplitude of the wave height for Hull B is equal to 

or greater than the corresponding value for Hull A, a fact again confirmed by 

experimental data.^^ 

Table 5 gives the stern wave profiles along a constant y close to the center 

line.  Figure 6 presents the same data in graphical form.  Note that the stern 

wave originates from the edge of the transom with negative values and rises to 

zero.  This is an indication that the fluid immediately behind the transom comes 

up to the free surface with an upward velocity component, which is related to a 

distribution of sinks on this part of the free surface.  The stern wave profile 

passes through the zero point, increases to a maximum positive value, and de- 

creases to zero again.  The wave length of the stern wave increases with increas- 

ing Froude number.  Finally, Figure 7 presents the three-dimensional perspective 

view of the wave pattern for Hull A at Froude number 0.35. 

CONCLUSION 

The results for the two selected hull forms show that XYZFS can now be used 

for realistic ship models including transom-stern hulls with bow domes.  The excel- 

lent wave resistance predictions can be largely attributed to recent improvements 

in the program's computational techniques.  However, the further development of 

the XYZFS program continues to build on the solid foundation provided by Dawson's 

pioneering work. 

376 



ACKNOWLEDGMENT 

This work was supported by the Ships, Subs and Boats Program sponsored by 

the Naval Sea Systems Command (NAVSEA).  The authors wish to thank Mr. William 

Sandberg of NAVSEA for his support and encouragement during the course of this 

study.  The authors would also like to thank Mr. Samuel Ohring of DTNSRDC for 

studying available numerical methods and acquiring an appropriate matrix solver 

and Mr. Michael Brabanski of DTNSRDC for installing the selected routine. 

REFERENCES ' 

1. Bai, K.J. and J.H. McCarthy, Proc. of the Workshop on Ship Wave- 

Resistance Computations, DTNSRDC, Bethesda, Md. 20084, Nov 1979. 

2. Dawson, C., "A Practical Computer Method for Solving Ship Wave 

Problems," Proc. 2nd Int. Conf. on Numerical Ship Hydrodynamics, Sep 1977. 

3. Dawson, C, "Calculations with the XYZ Free Surface Program for Five 

Ship Models," Proc. of the Workshop on Ship Wave Resistance Computations, 

DTNSRDC, Bethesda, Md. 20084, Nov 1979. 

4. Gadd, G.E., "A Method of Computing the Flow and Surface Wave Pattern 

Around Full Forms," Trans. RINA, vol. 118, 1976, p. 207. 

5. Gadd, G.E., "A Convenient Method for Estimating Wave Resistance, and 

its Variation with Small Changes of Hull Shape, for a Wide Range of Ship Types," 

Shipbuilding Marine Technology Monthly, vol. 28, Nov 1981. 

6. Tulin, M.P., "Wave Resistance - State of the Art 1980," Proceedings 

of the Continued Workshop on Ship Wave-Resistance Computations, Izu Shuzenji, 

Japan, Get 1980. 

7. Tulin, M.P., "An Exact Theory of Gravity Wave Generation by Moving 

Bodies, its Aproximation, and its Implications," 14th Symposium on Naval 

Hydrodynamics, Ann Arbor, Mi., Aug 1982. 

8. Dean, J.S., "Ship Wave Resistance Predictions with the XYZ Free Surface 

Program," Proc. Symposium on Computers in Flow Predictions and Fluid Dynamics 

Experiments, Am. Soc. Mech. Eng. Winter Annual Meeting, Wash., D.C., Nov 1981. 

9. Yeung, R., "Numerical Methods in Free-Surface Flows," Ann. Rev. Fluid 

Mech., vol. 14, 1982, pp. 395-442. 

10.  Mori, K., "Calculation of Wave Resistance and Sinkage by Rankine-Source 

Method," IIHR Report No. 262, May 1983. 

377 



11. Katazawa, T., "On the Linearization of the Free Surface Condition," 

Proc. of the Workshop on Ship Wave-Resistance Computations, DTNSRDC, Bethesda, 

Md. 20084, Nov 1979, APPENDIX. 

12. Mori, K., "On the Double-Hull Linearization Free Surface Condition," 

Proc. of the Workshop on Ship Wave-Resistance Computations, DTNSRDC, Bethesda, 

Md. 20084, Nov 1979, APPENDIX. 

13. Baba, E., "On the Free-Surface Conditions Used by Nakatake, et al., 

and Dawson," Proc. of the Workshop on Ship Wave-Resistance Computations, DTNSRDC, 

Bethesda, Md. 20084, Nov 1979, APPENDIX. 

14. Hess, J.L. and A.M.O. Smith, "Calculation of Potential Flow About 

Arbitrary Bodies," Pergamon Press Series, Progress in Aeronautical Science, 

vol. 8, 1966. 

15. Saunders, H.E., Hydrodynamics in Ship Design, SNAME, vol. 1, 1957, 

pp. 326-327. 

16. Chang, M.S., "Wave Resistance Predictions by Using a Singularity 

Method," Proc. of the Workshop on Ship Wave-Resistance Computations, DTNSRDC, 

Bethesda, Md., 20084, Nov 1979. 

17. Yim, B., "Wavemaking Resistance of Ships with Transom Stern," 

8th Symposium on Naval Hydrodynamics, Pasadena, Ca., 1970. 

18. Wilson, M.B. and T.P. Thomason, "Resistance Characteristics of 

Transom Stern Ships," DTNSRDC, SPD Progress Report, Apr 1982. 

19. von Kerczek, C, C. Scragg, and F. Stern, "A Comparative Study of 

the Resistance of Two Destroyer Hull Forms," NAVSEA Technical Note 051-55W-TN-0001, 

Mar 1983. 

20. von Kerczek, C, F. Stern, C. Scragg, and W. Sandberg, "Resistance 

Calculation for Destroyer Hull Forms," SNAME, Chesapeake Section, Dec 1983. 

378 



■ 

.DESIGN WATER LINE 

/ 
/ h=^ 

_- ■ 

=!== 
■ 

■      " 

^   z\ 
,-=> p=-^ Bv 
^ ̂

^ =\ 
^n -—— 

::--_ 
_______ 

"■ ■*! 

^ 
—*==^ 

fe= 
—- 

1 

Figure 1 - XYZFS Panelling of Hull A Showing the Forward 1/5 of 
the Model 

379 



0.01 

Az/e   0 

-0.01 - 

-0.02 - 

-0.03 

1         1         1         1         1         1         1        1 

/ f   u 

-^^ o ^ o^ 

< 
HULL A 

\ A 
o XYZFS AzB 

\ V 
A 

1 

XYZFS 

EXPT 

1 

Azs 

1 1 1 1 1 

A 

1 
0.1    0.15   0.20   0.25   0.30   0.35   0.40   0.45   0.50   0.55 

Fn 

0.01 

Az/e   0 

-0.01 - 

-0.02 - 

-0.03 

1          1          1          1          1          1          1         1 

o 
/ 

■--^ ^$11^ 
:::<,'- 

/ ° 
° -^ 5 

HULL B 
\ 

o XYZFS Azg \A 
A 

1 

XYZFS 

EXPT 

1 

Azs 

1               1 1 1                     1 

A 
1 

0.1    0.15   0.20   0.25 0.30   0.35 
Fn 

0.40   0.45   0.50   0.55 

Figure 2 - Comparisons of Calculated and Experimental Bow Levels (Azg) 
and Stern Levels (Azg) 

380 



o o o 

o 
2 - 

1 - 

o o o 

4 - 

3 - 

1 1 r 
HULL A 

O Cpj (XYZFS) 

A Cyy (XYZFS) 

—  EXPT C 

"1 r 

-L _L _L _L X _L J I 
0.1    0.15    0.20    0.25   0.30   0.35   0.40   0.45   0.50   0.55 

Fn 

1 1           1 
HULL B 

I 1 1 1 O 

o Cp (XYZFS) 
/ 

A 
A Cy^, (XYZFS) 

EXPT Cp 
/ 

/I 

/ - / 
r — 

- 

1 

o 

1            1 

o 

1 

y 
1 1 1 1 

- 

0 
O-l   0.15    0.20    0.25   0.30    0.35   0.40   0.45   0.50   0.55 

Fn 

Figure 3 - Comparisons of Calculated and Experimental Residual Resistance 
Coefficients (CR) with Wave Resistance Coefficients (Cw) 

381 



3 
I 

o 

u.s 

0.4 - 

1             1 1 1 1 

V 

1 1 1 

- 

0.3 - f \ 
- 

0.2 - / 
\ 

- 

0.1 - o \ 
- 

CO 
0 

y/^ o 
"5 
I ^^ 

o K^ 

"^ 
o -0.1 - - 

-0.2 - 
O o o - 

-0.3 - O   XYZFS - 

-0.4 

-n.R 

- 
    EXPT 

1                 1 1 1 1 1 1 1 

- 

0.1    0.15    0.20   0.25 0.30   0.35 
Fn 

0.40   0.45    0.50   0.55 

Figure 4 - Normalized Differences in Residual Resistance Coefficients 
Between Hull A and Hull B 

382 



0.04 
MODEL FIXED 

T 

Fn = 0.25 

MODEL SUNK/TRIMMED 

■sr\ /^ _ 

1                    1                    1 

u uoOOooooO®*^" 

II                   1 

°UCb 

T?/£ 

0<i 

aop Ooooooooooouooo<^ Fn = 0.30 

Fn = 0.35 

rj/C 

T- r- I 
oo 

o   o 
)°o o °°o o 

o o o 

1 

o o o o o 

1 

o o 0 

L_ 

Fn = 0.40 

I 
Oo 

o   o 

DOo o °°0 <J o o 

_l 

o 

L_ 

o o o o o 

L_ 

o o o 

_J L_ 

Fn = 0.45 

7?/e 

-0.04 

T T 

o 
o 

r- 

o 

^ 

o 
o 

o o o o o o o 
o 

JL_ 

o o 

L_ 

Fn = 0.50 

-1.0    -0.5 
(STERN) 

0      0.5 1.0 
(BOW) 

-1.0    -0.5 
(STERN) 

0      0.5 1.0 
(BOW) 

Figure 5a - Wave Profiles Along Hull A at Various Froude Numbers 

383 



0.04 

T7/e 

-0.04 

0.04 

T?/£ 

-0.04 

0.04 

MODEL FIXED 

)0n 

1 

O 

1 

o 
u u 

JL_ 

U 0 oo ooo ° 

L_ 

% 
Fn = 0.25 

MODEL SUNK/TRIMMED 

■Pn 

1                    >                   1 

„ o o 
oo 

n         n o o °"UOooooOO 

...1.,                  1                    1 

% 

T r 

CK 

^°°"°°0o_,.oO^^^-uo o o o o 

J L 

Fn = 0.30 

r ■ f- 1 

o°° 
■)0 0 n f\ 0 0 n 0 o o o o o 

1_ 

o 0 ©■ 

1 

V 

1 r 

pooo 
O°0 

O- - O OO-   ° o '-'       e^ 
o o o o o 

Fn = 0.35 

Fn = 0.40 

Fn = 0.45 

Fn = 0.50 

-0.04 

-1.0 -0.5 
(STERN) 

0.5 1.0 
(BOW) 

-1.0 -0.5 
(STERN) 

0 0.5 1.0 
(BOW) 

Figure   5b  - Wave Profiles Along Hull B  at Various  Froude Numbers 

384 



MODEL FIXED 
0.04 

-0.04 

0.04 

-0.04 

0.04 

-0.04 

0.04 

-0.04 

-0.04 

-0.04 

Fn = 0.25 

MODEL SUIMK/TRIMMED 
1                    1                    1 

1 

o oo 
*^       U       (j       o 

    1             1            1 

c 

1             1 T ■■ 

o o °o 

1               1 

u u 

1 

0 Fn = 0.30 °     O     u     ^ o 

o o 
o    o 

cr—0 o  Fn = 0.35 

1              1 

i 

I 

o o 
o o 

-         1               1 

u 

1 

c 

o ° o 

-—-^ °-o O 0 
Fn = 0.40 

^-^ ^ 
c 

o     ^    °        o 

 % Fn = 0.45 

O  O  O o 

2 !^ 
o 

Fn = 0.50 

-3.0    -2.5     -2.0    -1.5 -1.0 

(STERN) 
-3.0    -2.5     -2.0 -1.5     -1.0 

(STERN) 

Figure 6a - Stern Wave Profiles for Hull A at Various Froude Numbers 

385 



0.04 

T?/C 

-0.04 

0.04 

TJ/C 

MODEL FIXED 
1                    r 1 

0°° 

1          1 

o 

1 

c 

T?/£ 

T?/e 

-0.04 
-3.0 -2.5 

Fn = 0.25 

MODEL SUNK/TRIMMED 
1                    1                   1 

o 
oO 

w       O       u       u 

1                  1                 1 

c 

1            1 1 

o  °° 

1              1 

0 0 

1 . 

c 
Fn = 0.30 

Fn = 0.35 

 O o_ 

O      ° c 
Fn = 0.40 

1               1 1 

o 
o o 

o 
u 0 

o 

1                   1 1 

o 

Fn = 0.45 

O     o      °    °  o 
° o_ 

c Fn = 0.50 

-2.0 -1.5 -1.0 

(STERN) 

-3.0 -2.5 -2.0 -1.5 -1.0 
(STERN) 

Figure 6b - Stern Wave Profiles for Hull B at Various Froude Numbers 

386 



Figure 7 - Perspective View of the Computed Ship Wave Pattern for 
Hull A at Froude Number 0.35 
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TABLE 1 - COMPUTED WAVE RESISTANCE COEFFICIENTS 

Model Fixed Model Free to Sink & Trim 

Fn HULL A    HULL B HULL A HULL B 
1000 X Cw  1000 X C„ 1000 X C^ 1000 X C„ 

0.25 1.24 1.27 
0.30 1.10 1.01 
0.35 1.06 1.05 
0.40 1.69 1.97 
0.45 2.51 2.97 
0.50 2.93 3.46 

1.32 1.32 
1.22 1.08 
1.20 1.15 
1.97 2.36 
2.99 3.67 
3.49 4.32 

TABLE 2 - COMPUTED CHANGES IN LEVELS OF THE BOW AND STERN HEIGHT, 
SINKAGE AND TRIM COEFFICIENTS 

Fn AZgA Mjl -(AZg+AZg)g/u2 (AZg-AZg)2g/u2 

Bow Ht Stern Ht Sinkage Coeff Trim Coeff 

HULL A 

.25 -.00320 -.00146 0.0373 -0.0278 

.30 -.00479 -.00207 0.0381 -0.0302 

.35 -.00619 -.00316 0.0382 -0.0248 

.40 -.00523 -.00788 0.0410 0.0165 

.45 -.00106 -.01583 0.0417 0.0730 

.50 .00314 -.02280 0.0393 0.1038 

HULL B 

.25 -.00375 -.00125 0.0400 -0.0401 

.30 -.00594 -.00142 0.0409 -0.0502 

.35 -.00826 -.00242 0.0436 -0.0477 

.40 -.00701 -.00832 0.0479 0.0082 

.45 -.00171 -.01791 0.0484 0.0800 

.50 .00368 -.02639 0.0454 0.1203 
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TABLE 3 - - COMPUTATION OF RESIDUAL RESISTANCE COEFFICIENTS 

En % S/So 1000 X Cf 1000 X C^ X S/SQ 1000 X CR 

HULL A 

Model Fixed 

0.25 0.0697 1.00 3.06 1.24 1.56 
0.30 0.0678 1.00 2.97 1.10 1.40 
0.35 0.0686 1.00 2.89 1.06 1.35 
0.40 0.0772 1.00 2.83 1.69 2.02 
0.45 0.0826 1.00 2.77 2.51 2.85 
0.50 0.0814 1.00 2.72 2.93 3.26 

Model Free to Sink & Trim 

0.25 0.0707 1.02 3.06 1.32 1.71 
0.30 0.0691 1.03 2.97 1.22 1.62 
0.35 0.0697 1.04 2.89 1.20 1.62 
0.40 0.0790 1.05 2.83 1.97 2.47 
0.45 0.0845 1.06 2.77 2.99 3.54 
0.50 0.0814 1.07 2.72 3.49 4.05 

HULL B 

Model Fixed 

0.25 0.0711 1.00 3.05 1.27 1.60 
0.30 0.0679 1.00 2.96 1.01 1.31 
0.35 0.0718 1.00 2.88 1.05 1.36 
0.40 0.0829 1.00 2.81 1.97 2.32 
0.45 0.0894 1.00 2.76 2.97 3.34 
0.50 0.0884 1.00 2.71 3.46 3.82 

Model Free to Sink & Trim 

0.25 0.0719 1.02 3.05 1.32 1.72 
0.30 0.0693 1.03 .  2.96 1.08 1.48 
0.35 0.0735 1.04 2.88 1.15 1.61 
0,40 0.0864 1.06 2.81 2.36 2.92 
0.45 0.0931 1.08 2.76 3.67 4.30 
0.50 0.0908 1.09 2.71 4.32 4.97 
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TABLE 4a - WAVE PROFILES ALONG HULL 

X Fr. = .25 .30 .35 .40 .45 .50 
HULL A (Model Fixed) 

1.0 Bow 
.972 .017 .019 .020 .020 .020 .020 
.923 .015 .021 .025 .027 .029 .032  ' 
.874 .000 .012 .023 .028 .031 .034 
.824 -.006 -.003 .006 .019 .029 .036 
.774 -.003 .000 -.001 .001 .008 .016 
.717 -.002 .000 .004 .006 .009 .011 
.642 .000 .000 .004 .008 .012 .016 
.550 .001 .000 .002 .005 .009 .012 
.449 .001 -.002 -.001 .001 .004 .007 
.349 -.001 -.003 -.004 -.003 .000 .001 
.248 -.003 -.004 -.007 -.007 -.004 -.003 
.148 -.004 -.005 -.008 -.010 -.009 -.007 
.048 -.005 -.005 -.010 -.012 -.014 -.012 

-.052 -.004 -.005 -.011 -.014 -.016 -.018 
-.152 -.004 -.006 -.010 -.016 -.018 -.021 
-.252 -.003 -.006 -.009 -.016 -.020 -.022 
-.353 -.002 -.005 -.007 -.014 -.022 -.023 
-.452 -.002 -.004 -.006 -.012 -.021 -.026 
-.552 -.002 -.004 -.004 -.009 -.018 -.027 
-.652 -.002 -.003 -.001 r.007 -.014 -.024 
-.752 -.001 .000 .001 -.001 -.009 -.017 
-.845 .001 .002 .003 .005 -.002 -.009 
-.920 .003 .004 .005 .008 .003 .000 
-.978 .001 .003 .004 .006 .002 .000 

-1.0 Stern 
HULL B (Model Fixed) 

1.0 Bow 
.972 .014 .017 .017 .018 .018 .018 
.923 .012 .017 .021 .024 .026 .025 
.874 .001 .011 .017 .020 .024 .027 
.824 -.010 -.002 .008 .015 .021 .024 
.774 -.007 -.008 -.004 .002 .010 .018 
.717 -.002 -.001 -.001 .001 .004 .009 
.642 .002 .002 .006 .008 .011 .012 
.550 .005 .003 .006 .010 .013 .016 
.449 .004 .003 .004 .007 .010 .013 
.349 .000 .000 .000 .002 .005 .009 
.248 -.003 -.003 -.004 -.003 -.000 .003 
.148 -.005 -.005 -.007 -.008 -.006 -.004 
.048 -.006 -.007 -.011 -.012 -.012 -.011 

-.052 -.006 -.008 -.013 -.017 -.018 -.017 
-.152 -.005 -.009 -.014 -.020 -.022 -.023 
-.252 -.003 -.008 -.012 -.020 -.025 -.028 
-.352 -.002 -.005 -.010 -.018 -.025 -.030 
-.452 -.002 -.003 -.006 -.014 -.023 -.029 
-.552 -.002 -.001 -.002 -.010 -.019 -.026 
-.652 -.001 .000 .002 -.004 -.014 -.022 
-.752 .000 .002 .005 .003 -.007 -.015 
-.845 .002 .004 .007 .008 .001 -.008 
-.920 .004 .005 .009 .013 .008 -.000 
-.978 .002 .003 .006 .011 .008 .003 

-1.0 Stern 
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TABLE 4b  - WAVE PROFILES ALONG HULL 

X F,=.25 .30 .35 .40 .45 .50 
HULL A (Model Free to Sink and Trim) 

1.0 Bow 
.972 .017 .019 .020 .020 .020 .021 
.923 .015 .022 .026 .029 .030 .031 
.874 .001 .012 .025 .032 .034 .034 
.824 -.005 -.001 .007 .020 .030 .035 
.Ilk -.003 .001 .002 .003 .009 .016 
J\l -.002 .000 .005 .009 .011 .014 
.642 -.000 -.000 .003 .008 .014 .018 
.550 .001 -.001 .001 .005 .010 .014 
.449 .001 -.002 -.002 .001 .005 .009 
.349 -.001 -.004 -.005 -.004 .000 .003 
.248 -.003 -.005 -.008 -.008 -.005 -.002 
.148 -.004 -.005 -.009 -.011 -.010 -.006 
.048 -.005 -.005 -.010 -.013 -.015 -.012 

-.052 -.004 -.005 -.011 -.015 -.017 -.018 
-.152 -.004 -.005 -.010 -.017 -.019 -.021 
-.252 -.003 -.005 -.009 -.017 -.021 -.022 
-.352 -.003 -.005 -.007 -.015 -.023 -.024 
-.452 -.002 -.004 -.005 -.012 -.022 -.027 
-.552 -.002 -.004 -.003 -.009 -.019 -.028 
-.652 -.002 -.003 -.001 -.007 -.015 -.026 
-.752 -.001 -.001 .001 -.002 -.011 -.020 
-.845 .001 .002 .003 .004 -.004 -.013 
-.920 .002 .004 .004 .006 -.001 -.004 
-.978 .001 .002 .003 .005 -.002 -.007 

-1.0 Stern 
HULL B (Model Free to Sink and Trim) 

1.0 Bow 
.972 .014 .016 .016 .017 .018 .019 
.923 .012 .017 .022 .024 .026 .027 
.874 .002 .012 .018 .022 .024 .027 
.824 -.009 .000 .011 .018 .022 .025 
.774 -.006 -.005 -.002 .005 .010 .016 
.717 -.002 -.001 .001 .004 .007 .010 
.642 .002 .002 .006 .009 .013 .016 
.550 .005 .003 .005 .010 .015 .019 
.449 .004 .003 .003 .007 .012 .016 
.349 .000 -.001 -.001 .002 .007 .011 
.248 -.003 -.003 -.005 -.003 .001 .005 
.148 -.005 -.006 -.009 -.009 -.006 -.003 
.048 -.006 -.008 -.012 -.014 -.013 -.009 

-.052 -.006 -.009 -.014 -.018 -.019 -.016 
-.152 -.005 -.009 -.015 -.021 -.023 -.023 
-.252 -.003 -.008 -.013 -.022 -.026 -.028 
-.352 -.002 -.005 -.010 -.019 -.027 -.030 
-.452 -.002 -.003 -.006 -.016 -.025 -.030 
-.552 -.002 -.001 -.002 -.011 -.022 -.030 
-.652 -.001 .000 .002 -.005 -.018 -.028 
-.752 .000 .002 .005 .001 -.011 -.024 
-.845 .002 .004 .007 .008 -.003 -.017 
-.920 .004 .005 ,009 .011 .004 -.008 
-.978 .002 .002 .005 .007 .002 -.003 

-1.0 Stern 
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TABLE 5  -  STERN WAVE PROFILES ALONG CONSTANT Y CLOSE TO CENTER LINE 

X F,=.25 0.30 0.35 0.40 0.45 0.50 

HULL A (Model Fixed) 
-1.0 Stern 
-1.02 -.004 -.005 -.005 -.005 -.005 -.006 
-1.08 .019 .008 .007 .005 .004 .004 
-1.17 .010 .013 .016 .019 .016 .014 
-1.29 .004 .009 .013 .022 .024 .019 
-1.45 -.001 .003 .006 .017 .024 .021 
-1.65 -.002 -.002 -.001 .008 .019 .022 
-1.85 .000 -.002 -.003 -.001 .012 .019 
-2.05 .001 -.001 -.002 -.007 .000 .008 

HULL A  (Model Free to Sink and Trim) 
-1.0 Stern 
-1.02 -.006 -.007 -.008 -.012 -.021 -.027 
-1.08 .009 .007 .004 -.003 -.011 -.020 
-1.17 .010 .014 .016 .015 .003 -.008 
-1.29 .005 .010 .014 .023 .023 .013 
-1.45 -.001 .003 .007 .018 .026 .021 
-1.65 -.002 -.002 -.000 .010 .022 .023 
-1.85 .000 -.003 -.002 -.000 .016 .021 
-2.05 .001 -.001 -.002 -.007 .001 .011 

HULL B (Model Fixed) 
-1.0 Stern 
-1.02 -.006 -.008 -.007 -.007 -.008 -.006 
-1.08 .011 .011 .009 .007 .006 .006 
-1.17 .009 .012 .018 .024 .022 .018 
-1.29 .003 .007 .012 .022 .027 .023 
-1.45 -.002 .001 .004 .017 .025 .023 
-1.65 -.002 -.002 -.004 .006 .020 .022 
-1.85 .001 -.002 -.004 -.004 .012 .019 
-2.05 .001 .000 -.002 -.009 -.001 .009 

HULL B (Model Free to Sink and Trim) 
-1.0 Stern 
-1.02 -.008 -.009 -.009 -.012 -.021 -.028 
-1.08 .011 .010 .007 -.003 -.013 -.023 
-1.17 .009 .013 .019 .020 .006 -.008 
-1.29 .004 .008 .013 .025 .026 .017 
-1.45 -.002 .002 .004 .019 .027 .023 
-1.65 -.002 -.002 -.003 .009 .024 .024 
-1.85 .000 -.002 -.004 -.002 .016 .023 
-2.05 .001 -.000 -.002 -.009 .001 .012 
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A Comparison With Experimental Results Of Wave Resistance 
Predictions Using A Rankine Source Panel 

Method And A Slender Body Theory 

by ^ 

William C. Sandberg * 
and 

Carl A. Scragg    ** 

Introduction: This paper will present results from recently completed 

studies to assess the usefulness of currently available viscous and inviscid 

computational methods early in the ship design process. The motivation for 

this effort is the need to develop, for use at an early design stage, a 

capability for evaluating the effect of local hull form variations on drag 

and energy consumption. . 
'  ' ' ■ ■" i 

I 

It was decided to carry out computations for two transom stern hull 

variants for which model test data existed. Viscous hull drag and wave drag 

were computed by von Kerczek, Scragg, and Stern and subsequently appendage 

2 
drag by Stern and von Kerczek . The present paper will discuss only the wave 

drag computations. The code WAVE-DRAG was developed by Scragg at S.A.I, and 

applied to the two test case hulls. A description of his method and the 

results of his calculation are given in reference 1. which is the source 

of the brief summary we will give here. This method is similar to that 

*   Naval Sea Systems Command 
Washington, D.C. 20362 

**  Science Applications Inc. 
P.O. Box 2351 
LaJolla, CA 92038 
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3 
developed by Noblesse . The source strengths, determined from the Slender 

Ship approximation, are proportional to the longitudinal component of the 

local hull normal. 316 triangular panels were used to model the hull. The 

4 
transom, following the suggestion of Gadd , was left open. This approach to 

modelling the transom was checked by an alternative computation where the 

transom was extended up to the calm waterplane behind the transom. The 

result of the alternative calculation was approximately one percent higher 

than that for the open transom. Transom submergence has been computed by 

Scragg using a near field velocity code which predicts the fluid velocity at 

5 
the hull surface. Following Chang , the additional contribution to wave 

resistance due to sinkage and trim was obtained by integrating the pressure 

over the wetted surface of the hull to obtain the sinkage force and trim 

moment, from which the additional hydrostatic pressure due to transom wetting 

was obtained. 

Wave resistance was also computed by Cheng, Dean, and Jayne for the two 

test case hulls using XYZFS, which is a Rankine source panel method. The 

code used for the computation includes the capability to handle bow domes and 

also incorporates the new transom stern boundary condition of Cheng. The 

modification to the program and the results for these test cases are the 

subject of the paper by Cheng, Dean, and Jayne at this Workshop. Selected 

results from that paper will be presented here with those of S.A.I. 

Results: The wave resistance coefficients computed by the two methods for 

both the fixed and sunk and trimmed condition are given in Table 1. These 

values are plotted in Figures 1 through 4. It can be seen from Figures 1 and 
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2 that for both hulls in the fixed condition the Slender Body Theory results 

are lower than those of XYZFS at the two lowest Froude numbers (.25 and .30) 

and higher over the rest of the Froude number range. For the sunk and 

trimmed condition Figures 3 and 4 show that the same relative behavior is 

maintained, however, the differences between the results are now less. This 

decrease can be accounted for primarily by the larger percentage increase in 

C due to sinkage and trim that is predicted by XYZFS. The percentage 
w 

changes in C for each method due to sinkage and trim are given in Table 2. 
w 

. 

Figures 5 and 6 compare the C predictions for Hulls 1 and 2 from each 

method. A significant question from the design point of view is the Froude 

number at which the two hulls cross. From Figure 6 we see that the S.A.I, 

computations predict a C for Hull 1 that is lower than that of Hull 2 

between Froude numbers of .255 and .340 with Hull 2 becoming lower for all 

higher Froude numbers. From Figure 5 we see that XYZFS also predicts a lower 

C for Hull 1 in the Froude number range of .250 to .355 with Hull 2 higher W 3 3 

at all other Froude numbers. For comparison, the residuary resistance 

coefficients Cp, determined from experiment, are shown in Figure 7. The 

crossover values from the data are at Froude numbers of 0.185 and 0.394. 

Thus, both methods have correctly predicted that Hull 2 will have lower 

wavemaking resistance at the lower Froude numbers with Hull 1 becoming 

superior at higher Froude numbers. This is a significant accomplishment 

which indicate that both of these wave resistance computation methods in 

their present form are of immediate use, not only for research, but also in 

the design process. 
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TABLE 1 - COMPUTED WAVE RESISTANCE COEFFICIENTS 

Hull 1 
1000 X Cw 

Hull 2 

Model Fixed 

Fn XYZFS SAI XYZFS SAI 

0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

1.24 .644 
1.10 .913 
1.06 1.313 
1.69 3.026 
2.51 3.850 
2.93 3.726 

1.27 .751 
1.01 .546 
1.05 1.499 
1.97 3.383 
2.97 4.207 
3.46 4.054 

Hull 1 Hull 2 

Model Free to Sink and Trim 

Fn XYZFS SAI XYZFS SAI 

0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

1.32 .741 
1.22 1.006 
1.20 1.422 
1.97 3.266 
2.99 4.218 
3.49 4.097 

1.32 .796 
1.08 .590 
1.15 1.555 
2.36 3.530 
3.67 4.431 
4.32 4.286 
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TABLE 2 - PERCENTAGE INCREASE IN C DUE TO SINKAGE AND TRIM 

Hull 1 Hull 2 

_Fn XYZFS    SAI XYZFS    SAI 

0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

6% 16% 
11% 10% 
12% 8% 
16% 8% 
19% 10% 
19% 10% 

4% 6% 
7% 8% 
9% 4% 

20% 4% 
23% 5% 
25% 6% 
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Wave Resistance of Vertical Cylinders with 

Ogival and Elliptical Water Planes 

K. Nakatake, A. Nishida and R. Yamazaki 

(Kyushu University, Fukuoka, Japan) 

1. Introduction 

At the first workshop, we presented the results [1] calculated 

by three kinds of low speed theories,i.e. the modified low speed 

theory (abbr. MLST) [2] the conventional one (abbr. LST) [3] and 

Guevel's theory [4].  Among them, the results of MLST agreed compara- 

bly well with Dawson's [5].  He used the Rankine source and the same 

free surface condition as MLST for wall sided hull, as later pointed 

out by Mori [6].  This fact encouraged us to adopt MLST and LST again 

for calculating the wave-resistance of the vertical cylinders with an 

ogival and an elliptical water planes. 

In addition to the above-mentioned analytical theories, we pre- 

sent the purely numerical results which are obtained by the fundamen- 

tal equations of the low speed theory and the Chan's finite differ- 

ence scheme [7].  Computations are made for the same vertical cylin- 

ders. 

2. Brief Description of Low Speed Theory 

2.1 Wave-Resistance Expressed by Modified Low Speed Theory [MLST] 

As an improvement of the conventional low speed theory [3], this 

method [2] was proposed to take into account the effect of the local 

non-uniform flow around a ship in the expression of the wave-resis- 
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tance. 

The ship is fixed in the uniform flow of velocity V.  The origin 

of coordinate system 0-xyz is fixed at the midship and the xy-plane 

nearly coincides with the still water surface and the x-axis is in 

the direction of uniform flow. ' 

Starting from the basic equations of the steady wavemaking theo- 

ry and repeating order-checking and coordinate transformations three 

times, we obtained the following expression of wave-resistance R^^ [2]. 

TYz 

Rw=^^!f  |B(ksecV)|'sec^eci.e. (2.1) 

where 

F ^ 
e 

D(x,>,) = |j{U-^+0)+f^( 5.'!>.;) on F^ , k.-'^/T. (2.3) 

*o ^^^  ^0   express the velocity potential of the double body flow and 

the wave elevation due to ^^ ,   respectively.  And (|)^_^= 3cj)^/3x and i>     = 

T>^o/^Y'     The strained coordinates B,  and n express the effect of non- 

uniform flow, and are obtained approximately as 

I ~        f—~—1 '*->^ . V = \       f ^1 (^1 
J     LCosoJj along L      ) Ccrtoc    =T^r.r,  ^^„-; ^^ 

streamline 'i*^'> 
(2.4) along equi- 

potential line 

where y^(x) is the half breadth of a ship at the load water line, and 

q^ and a are expressed as ' ' '< 

The region F^ means the area of the still water surface outside the 
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ship hull.  Superscript o means that the value is evaluated at F^. 

2.2 Wave-Resistance Expressed by Conventional Low Speed Theory 

Usual low speed theory is derived from the above-described theo- 

ry under some assumptions.  In this case, the function B(k,6) is de- 

fined as 

B(f?,e) = --^^^^^M  D(x,^) e dxcL^.        (2.6) 

2.3 Expressions of D(x,y) Fvinction 

We treat the two-dimensional flow around vertical cylinder with 

some shape of water plane which is of length L.  Since Cp is express- 

ed as   ;: . 

D(x,y) becomes from Eq. (2.3) 

Introducing the complex velocity potential W(z) (z=x+iy), Eq. (2.8) 

is transformed to 

where RP and IM mean the real and imaginary part of the function in 

the parenthesis, respectively. Since the mapping functions between 

the circle and the ogival shape or the elliptical shape are known, we 
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can calculate D(x,y) function on F . 

In obtaining the ?- and r\-  values, we need to calculate the 

streamlines and the equi-potential lines around the cylinder.  These 

are obtained by mapping those lines aroiind the circle. 

The curves of D(x,y), the weighted amplitude function and Rjy are 

represented in the forms : 

D CX.^) = D Cx.'^)/(-rFn ) ,    where   Y^^T/jyl ^ 

(2.10) 

3. Brief Description of Finite Difference Method 

We treat the steady wavemaking problem as the initial value pro- 

blem by making use of the doioble body flow and the finite difference 

method according to Chan [7]. 

At first, the disturbed velocity potential <p  and wave elevation 

C are divided into the double body flow part cj)^ , r,^   and the wavy part 

^1 , r, ,   respectively, i.e. , 

4)  and r.^   are known, (f). and C, are unknown, and <^^   has to satisfy the 

Laplace equation, 

d)   -t-cb+d)   =-0 (3.2) 
Tixx   '1 ^"j   ~< 2? 

From the dynamical condition at the free surface, we get 

6-t-<b<f)+ct><j)+^t,, -0 (3.3) 

From the kinematic condition at the free surface, we obtain the fol- 

lowing two kinds of conditions.  One is 
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At the limit (j)^=0, Eqs. (3.3) and (3.4) yield the same free surface 

condition as Dawson's [5].  Then this case corresponds to MLST.  The 

other is 

SK^ tx"^.x ■^t^S,^-5.x4,x-S.^4i3-<|>„ + D(x^^)=o.       (3.5) 

At the steady state, combination of Eqs. (3.3) and (3.5) leads to the 

same condition as Baba's one [3].  Then this case corresponds to LST. 

Since the computation domain is limited, other boundary con- 

ditions are neccessary: 

(i)  ^,= 51=^0 at the upstream end and side ends (±yg) 

(ii)  4*1 =°   at the depth (Zg) deeper than a certain depth 

(iii) radiation condition at the downstream end (3.6) 

As to last condition, Orlanski's treatment is applied following the 

Chan's method. 

As a result, combination of Eqs. (3.2), (3.3) and (3.4) corres- 

ponds to the modified low speed theory, and combination of Eqs. (3.2) 

(3.3) and (3.5) corresponds to the conventional low speed theory. Use 

of the body-fitted coordinate system in the y-direction and the fi- 

nite difference scheme follows the Chan's procedure. 

The wave-resistance R^ is obtained by the momentum theorem as 

Rw4^»|(^.;^i"-C)^^-^«/%;cij (3.7) 

at far downstream end. 

4. Calculated Results 

We select two kinds of vertical cylinders.  One is of an ogival 

410 



water plane which we name L-15, because it has lens shape and breadth 

/length=0.15.  The other has an elliptical water plane which we name 

E-15.  The length of each cylinder L is 1.0m. 

4.1 Low Speed Theory 

A finite region of integral is divided into 92 segments in the 

x-direction and 38 in the y-direction. Figs.la,b show the mesh di- 

visions around cylinders. Figs.2a,b show the strained coordinates 

obtained by Eq. (2.4). These values are strained considerably near 

F.P. and A.P.. Functions D(x,y) are shown in Figs.3a,b. This func- 

tion becomes large and changes violently near F.P. and A.P. There- 

fore the area near the ends of cylinder is divided very small as in 

Fig. 1. 

The range of 9-integral is from 0° to 65** at F7^=0.2 and the up- 

per limit increases until 80° with F^,. because exact integration is 

difficult beyond this limit due to violent change of the integrand. 

Figs.4a,b and Figs.5a,b show the weighted amplitude functions AMP 

obtained by MLST and LST.  The values of C^ are tabulated in Table 1 

and are shown in Figs.8 and 9 in the forms of curves.  Difference 

between MLST and LST are considerable both in magnitude and in phase 

in the range F^<0.35. 

4.2 Finite Difference Method 

The advantage to divide the velocity potential <^   into c})^ and (}>, 

is to reduce the number of the mesh points in the depthwise direction. 

Mesh intervals Ax, Ay, Az are changed according to F^   as follows: 
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F n Ax Ay Az At 

0.23 0.0425 0.021 0.080 0.1 

0.25 0.050 0.025 0.085 0.1 

0.27 0.056 0.030 0.100 0.1 

Numbers of division are 39 in the x-direction, 24 in the y-direction 

and 6 in the z-direction.  And number of iteration is 230.  Figs. 6 

and 7 show the wave patterns around cylinders.  At the first glance, 

these patterns seem to be plausible.  But, if examined in detail, 

they are not so fine.  For example, the first crest of the wave of L- 

15 shows the phase-lag compared with experimental results.  One of 

reasons for it may be caused by the coarse mesh around F.P. and A.P. 

And we wish to add the fact that the wave patterns change  consider- 

ably by changing the mesh intervals.  R^^ is obtained by Eq. (3.7) 

which is evaluated at the last 10 sections behind the ship.  Since R^ 

oscilates along the x-direction, we take the mean value as the wave- 

resistance in the steady state.  These values are tabulated in Table 

2 and plotted in Figs. 8b and 9b.  The agreements between numerical 

results and analytical ones are not so good. 

5. Concluding Remarks and Acknowledgement 

Through the computations performed, we have following remarks. 

1) If the results obtained by the low speed theory are fine,  the 

analytical method is still effective in evaluating wave-resistance, 

because the computer time is very short. 

2) Finite difference method needs more know-how, experiences, time 

and money.  But it has big advantage that the whole flow field 
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becomes clear over the analytical method. 

....  - - -      -    ■     1  ■ 
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Table 1 C  Values Calculated by the Low Speed Theory 
w 

F^ 

OGIVAL WATER PLANE ELLIPTICAL WATER PLANE 

MODIFIED LOW LOW SPEED MODIFIED LOW LOW SPEED 
n 

SPEED THEORY THEORY SPEED THEORY THEORY 

0.15 0.027>'10-3 0.047''10-3 0.291x10-^ 0.144x10- 3 

0.16 0.037 0.046 0.333 0.241 
0.17 0.124 0.070 1.283 0.622 
0.18 0.054 0.162 0.476 0.429 
0.19 0.232 0.094 2.052 0.833 
0.20 0.117 0.272 1.742 0.528 
0.21 0.228 0.264 1.077 1.539 
0.22 0.559 0.185 3.402 0.990 
0.23 0.454 0.548 4.705 0.775 
0.24 0.197 0.733 3.224 2,119 
0.25 0.423 0.511 1.852 2.945 
0.26 1.154 0.346 2.789 2.275 
0.27 1.886 0.734 5.752 1.200 
0.28 2.087 1.494 8.840 1.353 
0.29 1.726 2.167 10.500 2.782 
0.30 1.128 2.464 10.420 4.748 
0.31 0.656 2.305 9.134 6.527 
0.32 0.621 1.800 7.082 7.272 
0.33 1.287 1.247 5.233 6.872 
0.34 2.770 1.005 4.050 5.685 
0.35 4.987 1.313 4.000 4.215 
0.40 20.29 10.72 16.73 4.120 
0.45 32.61 24.61 34.12 17.47 
0.50 37.70 33.71 44.27 31.36 
0.55 36.18 35.67 45.81 38.14 
0.60 31.61 33.05 41.80 38.40 
0.65 26.42 29.06 36.11 35.03 
0.70 21.76 24.93 30.05 31.12 
0.75 17.86 21.35 24.78 26.87 
0.80 14.84 18.71 20.76 22.64 
0.85 12.29 17.02 17.53 19.22 
0.90 10.36 15.98 14.88 16.90 
0.95 8.79 15.20 12.54 15.44 
1.00 7.40 14.41 10.38 14.50 

Table 2 C Values Obtained by the Finite Difference Method 

F„ 

... 

OGIVAL WATER PALNE ELLIPTICAL WATER PLANE 

MODIFIED LOW LOW SPEED MODIFIED LOW LOW SPEED 
n SPEED THEORY THEORY SPEED THEORY THEORY 

0.22 0.25*10-^ 0.58'<10-^ 0.28x10'^ 0.55><10'^ 

0.23 0.22 0.56 0.25 1.5 

0.24 0.17 0.44 0.46 2.8 

0.25 0.24 0.14 1.25 2.1 
0.26 0.56 0.20 1.9 1.3 

0.27 1.1 0,70 2.4 3.0 
0,28 1.6 1.4 2.5 4.0 
0.29 3,1 3.0 3.5 

0.30 4,2 4.0   5.5 
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t. rii   r. [ r*^ 

Fig. la Mesh Division 
around L-15 

Fig. lb Mesh Division 
around E-15 

Fig. 2a Strained Coordinates 
around L-15 

Fig. 2b Strained Coordinates 
around E-15 

^ 
<0    -l.^O    -i.l'C Ycic        -ii.2D c. -.:zrw?. 

Fig. 3a D(x,y) Function of L-15   Fig. 3b D(x,y) Function of E-15 
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NUMERICAL CALCULATIONS OF THE POTENTIAL FLOW 

ABOUT THE WIGLEY HULL* 

S. M. Yen and R. R. Chamberlain 
Coordinated Science Laboratory- 

University of Illinois 
Urbana, Illinois  61801 

Introduction 

The objective of our study is to develop a numerical method to solve directly 

the potential equation for the full nonlinear ship wave problem. In a sense, we 

attempt to design and construct a numerical towing tank to measure the potential 

flow field around a ship of arbitrary shape. We have chosen a design of the numer- 

ical towing tank which has the following features: 

(1) The computational domain moves with the ship and is bounded by the free sur- 

face, the upstream boundary, the downstream boundary, the side boundary, the 

symmetry boundary, the hull surface and the bottom boundary (See Fig. 1); 

therefore, only half of the model is tested. The positions of the boundaries 

can be changed with respect to the hull position. 

(2) The computational mesh system is divided into several regions which are 

designed to adapt to the hull surface, the free surface and the local property 

gradient. The mesh near the free surface is time-dependent. The aim of the 

mesh system is to obtain as uniform as possible an error distribution in the 

numerical solution. Experimentally, the placement of the nodes determines the 

positions at which numerical measurements are taken. 

(3) The boundary conditions are set as follows: i 

(a) Upstream boundary:  free stream. 

(b) Downstream boundary:  (i) placed close to the ship:  nonreflective 

(ii) placed at a large distance from the ship: 

free stream below the surface. 

This work was sponsored by the Office of Naval Research under  Contract  N00014- 

80-C-0740 
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(c) Sjnnmetry boundary:  symmetry condition. 

(d) Bottom boundary:  0  = 0 (0 = potential function). z 
(e) Side boundary:  ^  = o. 

(f) Hull surface:  solid body condition. 

(g) Free surface:  kinematic and dynamic conditions. 

(4) The time-dependent approach is used to obtain the long-time (steady state) 

solution. The free surface condition is updated at each time step by using a 

stable scheme with as little damping as possible. 

(5) The governing equation, which is complicated due to the complex mesh system 

and the resulting numerical transformation, may be solved by using an itera- 

tive method. The elliptic solver is the numerical instrument to measure the 

flow variable, i.e., the potential function. 

The design features involve several computational difficulties which are 

characteristic of the free surface wave problem. We have developed methods to deal 

with these computational difficulties; however, these methods introduced new diffi- 

culties, some of which were unforeseen and which have to be resolved. We shall 

briefly mention two examples of these difficulties and possible ways to alleviate 

them. The first concerns the implementation of the downstream (open) boundary con- 

dition and the other, the solution of the elliptic equation. Orlanski's scheme to 

implement the open boundary condition, which involves the numerical calculation of 

the advection speed, is extremely sensitive to numerical errors. A method has been 

developed to implement this scheme for a nonlinear free surface wave problem [1]; 

however, its application to the ship wave problem has not been tested. Another 

alternative is to place the downstream boundary at a large distance from the ship 

and to apply the free stream condition below the free surface. 

The body-fitted coordinate system introduces complexities into the structure 

of the matrix arising from the elliptic equation. These complexities preclude the 

use of fast direct solvers. A fast elliptic solver is needed not only to implement 

both the hull and the free surface conditions accurately, but also to increase the 

computational efficiency. 

In our present phase of study, we tested the Wigley model in our numerical 

towing  tank under the linearized condition.  In this situation, we are able to use 
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a direct method to solve the elliptic equation by employing uniform mesh spacing in 

the I and y directions. We shall present in this paper the results of the numeri- 

cal experiments which include the hull wave profile, the contour map of the waves 

about the ship, the wave resistance, the effect of open boundary and the effect of 

change in computational parameters. These numerical experiments were conducted on 

the Wigley ship under linearized conditions in order to study the validity of the 

basic features of our numerical method. It is our intention that this study will 

lead to the development of a numerical towing tank for a ship of arbitrary shape 

under nonlinear conditions. 

Numerical Method 

The Wigley hull under consideration is defined by the equation 

f(x.z) = |(1 - 4x2)(l - z^/H^) (1) 

for 2 ^^^2 

and - H i z 1 0 

B = 0.10 

H = 0.0625 

2 
The wetted hull surface area at rest, S (nondimensionalized by L ),  is obtained 

from the formula 

L/2 
S = 2 f  r   [1 + f^ + f^]^^2 dx dz 

=^H «^l/2      ^   ^ 
(2) 

^1/2 

All integrations are performed using cubic spline quadrature, and the value  for  S 

is 0.1487906. 

We wish to numerically solve for the potential function j* about the Wigley 

hull as well as the free surface height T\ under linearized conditions. Under these 

conditions, we apply the hull condition on the centerplane of the ship and the 

kinematic and dynamic conditions on the level of the undisturbed free surface (the 

plane z = 0). With the implementation of the boundary conditions simplified in 

this way, we may use the Cartesian coordinate system. The governing equation to be 

solved numerically is, therefore, the Laplace equation. 
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The domain size in the x, y and z directions is 6.5 x 2.42 x 0.61. (These 

lengths are nondimensionalized by the ship length L.) The mesh system is shown in 

Fig. 2. It is uniform in the x and y directions and nonnniform in the z direction. 

The number of grid points is 131 x 31 x 16. We have also performed numerical 

experiments using other domain sizes and mesh systems in which nonuniform spacing 

is used in all directions. 

The upstream boundary is located two ship lengths ahead of the bow and the 

downstream boundary is placed 3.5 ship lengths behind the stern. This placement is 

based on our early numerical experiments to study the influence of the location of 

the downstream boundary on the solution near the ship. We should point out, how- 

ever, that the free stream condition is implemented only below the surface. 

In our numerical experiment, the ship accelerates linearly to its final velo- 

city in 10 time steps. The time step At is 0.02. (Time t is nondimensionalized by 

L/U, where U is the final velocity of the ship.) The values of i> and i] at t = 0 

are set equal to zero throughout the domain. At each time step, the free surface 

conditions are updated using a neutrally stable scheme [2]. Values of ^ on the free 

surface are used as Dirichlet conditions in the solution of the Laplace equation. 

A fast direct solver [3] is used in the numerical solution of this equation. 

Numerical Results I  ' 

Long time solutions have been obtained for Froude number = Fr = 0.266, 0.350 

and 0.452. The hull wave profiles remain almost the same after t = 3. However, 

other results, including the wave resistance, reach their steady state values after 

a much longer time, particularly for lower Froude numbers. 

The CPU time is 5.7 sec. per time step on the a)C Cyber 175 computer. The 

numerical calculation consists of the determination of T^ and 0 at 4030 points on 

the free surface and the determination of ^ at each of the 60,915 interior points. 

The results for the wave height on the free surface are useful in studying the 

effects of the location of the downstream and side boundaries and the implementa- 

tion of the boundary conditions there. 

Figs. 3 and 4 show the development of the wave profiles along the centerline 

for Fr = 0.266  and 0.452.  The wave profile on the hull appears to develop very 
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early while the disturbance barely reaches the downstream boundary. For Fr = 

0.266, a disturbance appears at the upstream boundary at about t = 2. We are 

currently studying the source of this disturbance. 

The hull wave profiles are tabulated in Table 1 and shown in Figs. 5-7. For 

Fr = 0.266 and 0.350, we compare our results with the Michell profiles. The basic 

features of these two profiles are similar. However, the amplitudes of the bow 

waves in our calculations are lower. Also, there seem to be some differences near 

the stern for Fr = 0.266. 

Our results of the wave resistance are tabulated in Table 2 for the three 

Froude numbers considered. Fig. 8 shows the wave resistance as a function of time 

for Fr = 0.452. It appears to reach the steady state value at t = 7. Fig. 9 shows 

the comparison of our results of the wave resistance with the Michell calculation 

and an experiment. This experiment measured the total resistance with the model 

fixed. Our values of the wave resistance are lower than the Michell values at 

higher Froude numbers. 

Fig. 10 shows the wave pattern development about the Wigley hull for Fr = 

0.452. We make the following observations. First, the side boundary is placed far 

enough away from the model so that the disturbance never reaches it during the 

course of the calculations. Second, a significant disturbance reaches the down- 

stream boundary about t = 5 and is prevented from passing through. The question is 

whether this disturbance will have any influence on either the hull wave profile or 

the wave resistance. Our results indicate that there is no effect at all. (For 

example, see Fig. 8 for wave resistance.) Fig. 11 shows the wave development at a 

longitudinal cross section of the domain (y = 1.13). We observe that some wave 

reflection at the downstream boundary does occur away from the centerline. This 

reflection seems to propagate upstream. 
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Table 1 

FORMAT FOR TABULATED VALDE OF WAVE ELEVATION 

S. M. Yen and R. R. Chamberlain/Finite Difference 

Wigley Wigley Wigley 

Fr=0.266 Fr=0.350 Fr=0.452 

x/£ Tl n n 

-1.0 0.075 0.050 0.032 

-0.9 0.124 0.092 0.061 

-0.8 0.108 0.109 0.081 

-0.7 0.025 0.091 0.085 

-0.6 -0.082 0.042 0.072 

-0.5 -0.158 -0.023 0.045 

-0.4 -0.166 -0.083 0.009 

-0.4 -0.112 -0.124 -0.030 

-0.2 -0.033 -0.137 -0.065 

-0.1 -0.027 -0.123 -0.091 

0 -0.041 -0.091 -0.106 

0.1 0.012 -0.055 -0.109 

0.2 -0.033 -0.027 -0.102 

0.3 -0.067 -0.011 -0.090 

0.4 -0.074 -0.007 -0.076 

0.5 -0.062 -0.011 -0.064 

0.6 -0.045 -0.014 -0.057 

0.7 -0.033 -0.011 -0.054 

0.8 -0.024 -0.011 -0.055 

0.9 -0.008 0.013 -0.055 

1.0 0.029 0.030 -0.049 
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Table 2 

FORMAT FOR TABULATED VALUE OF WAVE ELEVATION 

S. M. Yen and R. R. Chamberlain/Finite Difference 

Fr S 

0.266 

0.350 

0.452 

0.970 X 10"^ 

0.639 X 10"^ 

2.39 X 10~3 

429 



m 
Q) 
•H 
^1 
rt 

X) 
C 
D 
O 

r^l 

0) 
^ 
4-J 

U-( 
o 

u 
a 
(U 
B 
OJ 
o 
ca 

rH 
p- 

aj 
> •rt 
iJ 
rt 

iH 
0) 
>-i 

(U 
.13 
4-1 

M e 
•rl 
i> 
J 

CO • 
C H 

•H 0) 
CO TJ g O 
o e 

13 
>. 

^ (U 
nj iH 
C M 
o •H 

•H 13 
4J 
CO <U 
4J rC 
3 4-1 
a 
B 13 
o C u n3 

430 



(a) 

(b) 
L y 

Fig. 2.  Computational mesh system: 

(a) x-y plane:  uniform grid spacing, 
(b) y-z plane:  nonuniform grid spacing in the z-direction. 
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NUMERICAL SIMULATION OF SHIP WAVES 

BY DIRECT  INTEGRATION  OF NAVIER-STOKES EQUATIONS 

Hideaki Miyata 

Shinichi  Nishitnura 

Hisashi   Kajitani 

Department of Naval Architecture 

The University of Tokyo 

1. Introduction 

Linear wave making theories are usually unsuccessful in the estimation of wave 

resistance of practical hulls.    This is essentially attributable to the nonUnearity of the 

free surface phenomena.    Experimental studies clarified that the generation of steep 

waves called free surface shock wave   (FSSW) is the most significant   phenomenon and 

that it is followed by the energy-deficient phenomena of wave breaking and free 

surface turbulence [1],   [2]  and [3].    Because the steep waves are generated in the 

near-field where disturbance velocities are grossly of the same order of magnitude 

with the uniform stream, the nonUnearity of the free surface condition must be 

thoroughly taken into account in the computation of waves and wave resistance. 

On the other hand the interaction of wave motion with viscous flow gradually 

attracts attentions of researchers.    Stern waves of practical hull forms cannot be 

interpreted without sound understanding of the effect of boundary layer and its 

separation [4].    In the future development of wave theories viscosity must be 

carefully considered, and the assumption of irrotational flow must be ceased.    The 

effect of sinkage and trim is taken into account in some of the theoretical mehtods, 

such as the Dawson's method [5 ]   (in which free surface condition is basically linear). 

The force that causes sinkage and trim is partly due to viscous fluid motion,  and hence 

a wave making theory that can deal with viscous fluid motion must be developed to 

complete the theory. 

One of the methods that can apply the exact nonlinear free surface condition and 

can   take   viscosity into account is the MAC method [ 6 ] .    At the Experimental Tank of 

the University of Tokyo the modified MAC method called Tokyo University Modified 

Marker-And-Cell (TUMMAC) method has been continuously developed mostly for the 
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simulation of waves generated by advancing bodies in deep water.    The TUMMAC-I 

method was one for the waves of a floating wedge model advancing steadily [7 ] ,[ 8] 

and the TUMMAC-II method was one for ships of arbitrary waterUne [ 9 ].    The 

TUMMAC-V method was a two-dimensional version used in order to simulate the 

detailed nonlinear wave motion with a fine cell division [ 10 ].    In this paper TUMMAC- 

IV is employed for the simulation of waves and flow field of a Wigley's hull.    The 

TUMMAC-IV, which is under development, is capable of computing waves generated 

by ships of arbitrary hull form.    At the present stage of development of the TUMMAC- 

IV method, computation of the waves of aft-bodies and estimation of wave resistance 

are not yet attained, but only the waves of fore-bodies are presented and compared 

with experiment.    The effect of viscosity will require much time to be properly 

accounted for, as considerable efforts must be devoted for the achievement of 

adequate resolution of turbulent motion. 

2. Computational method 

2.  1     Solution procedure 

The solution method TUMMAC-IV employed here is a modified version of TUMMAC- 

II which is also an improved version of TUMMAC-I.    Therefore, the solution procedure 

is, in many respects, common to those described in references [7 ] ,   [8] and [ 9] , 

and it is described here only briefly. 

The Navier-Stokes equations for incompressible fluid and the equation of 

continuity are represented in finite-difference forms and solved as an initial-value 

and boundary-value problem by time-marching and iterations. 

For discrete treatment a staggered mesh system is used.    And then, the Navier- 

Stokes equations in finite-difference form give the following equations by forward 

differencing in time.    For the convective terras the combined donor-cell and centered 

differencing is employed and for the diffusive terms centered differencing. 

n+1 ^  r DT 
"i+i  jk        ^i+i  jk DX 

^ j + 1   k   " h jk 

DY 

>^i j k + 1   ~ h jk 

n+ 1 
''i j+i  k    '    "^i j+l  k 

w"":;^    .     =    C..,      .   - ^'^  " 1^  DT 
ilk+^ iik+i 

DZ 
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In Eqs.   (1) ,   J;,  n,  C   are sums of terms of convection and diffusion and ijj is pressure 

divided by the desity of water.    DT is time increment and DX, DY and DZ are length, 

width and height of a rectangular cell.    Subscripts are used for the cell location and 

superscripts for the time level.    Eqs. (1)   are used to give a new velocity field from a 

new pressure field in the course of time-marching, and at each time step a pressure 

field is updated by the solution of the Poisson equation below which is iteratively 

solved by the SOR method. 

1 ,m ,     ,ra+ 1 
1 lit +   \Li 

m+1   ^     r    ^i + 1 jk        ^i -Ij k 

.m .m+1 .m m+1 

^   ^ij+lk        '*'ij-lk     ^   ^ijk+1 '^ijk-l _   R ] (2) 

DT DX DT DY DT DZ 
•i jk 

The computational scheme is shown in block diagram in Fig.l.    ! 

2.  2     Boundary condition 

It is very significant for the finite-difference method to impose proper conditions 

at various computational boundaries.    The boundary conditions of TUMMAC-IV is 

essentially common to those of TUMMAC-II described in [ 9 ] except for the condition 

of a body boundary, at which waves are generated. 

The hull surface is approximated in the manner illustrated in Figs. 2 and 3.    The 

water-line is assumed to be a succession of straight segments, and the frame-line is 

approximated by a step-like configuration.    The body boundary condition is imposed 

in the cells denoted B.    A free-slip condition is applied, and then   1)  the velocity 

normal to the segment is to be zero,    2) the divergence of the boundary cell is to be 

zero and    3) the normal derivative of the velocity tangential to the segment is to be 

zero.    These conditions are satisfied by the technique extended from that initiated by 

ViecelLL [11 ] for a 2-D case.    The procedure is described in [9] in the case of ship 

of vertical walls.    The procedure of TUMMAC-IV is contrived  to properly take the 

vertical velocity component into account. 
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3.    Results of computation 

3.  1     Condition of computation 

The   forebody of a Wigley's hull which is 2.5m in full length is chosen for the 

computation.    The computational domain is 0. 80x 0. 30 x:0. 50m in   x, y, x   directions. 

The cell dimensions   DXXDYXDZ    are   0. 025x 0. 010 x 0. 03125m.    DX  in Fig.2   is 

0.050m, which is Little coarse cell division and the above finer one is used in the 

computation in this paper.    The number of cell is around 20000.       The Froude 

numbers chosen here are   0.267, 0.289   and   0.316   and the time increment   DT is 

from   0.00300   to   0.00354 sec.    The number of time step for the acceleration is    300 

steps and the steady state at   Fn = 0.267   is reached at the   600-th step and again 

accelerated for   100   steps and the steady state at   Fn = 0.289   is reached at the    900- 

th step and once more accelerated to have the steady state of   Fn= 0.316   at the   1200- 

th step.    The CPU time required by HITAC M-280H for this    1200-th steps is about 

71 minutes. 

At the end of this paper a computational result of waves around the forebody of a 

3m   model of a bulk carrier M55FO   on ballast condition is presented.    This hull form 

is one of the typical   DW 27000 MT   bulk carriers with a bulbous bow.    In this case 

DXxDYxDZ    are    0. 020x 0. 020x 0. 018 m. 

3.  2     Computed waves and velocity field 

Computed wave height contours at three Froude numbers and measured one at 

Fn = 0.289   are shown in Figs. 4 and 5.    The angle of wave crest line to the centerline 

is decreased by the increasing Froude number, as experimentally explained [1 ] ,  [2 ] 

and [ 3].    The comparison with the measured in Figs.  5 and 6 implies quantitative 

inadequacy, although it is qualitatively satisfactory.    The inadequacy can be partly 

or mostly removed by the adoption of finer cell dimensions though with high 

computational cost [8].    Computed fields of velocity vector (v-w) components on 6 

vertical planes are shown in Fig. 7. 

Computed wave height contours of M55FO are shown in Fig. 8   being compared with 

the experimental results in Fig. 9.    The agreement is good with respect to the foremost 

wave and discrepancy becomes obvious in the wave trough behind it and the second 

wave crest.    This discrepancy is attributable not only to the numerical error but  also 

to the complicated energy-deficient flow caused by wave breaking which the present 

method is not capable of accounting for.    However, this computational results of waves 
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which are the cause of wave resistance imply that the present method is already- 

useful for the prediction of relative magnitude of waves between hull forms to be 

compared.      Hence, useful information for the design of hull forms of small wave 

resistance is derived in more detailed manner than the integrated value of wave 

resistance. 

4. Concluding remarks .       ' 

For finite-difference method the accuracy must be compromised with the economy, 

when the problem of stability is settled.    Although it is certified that high accuracy 

is attained by finer cells [ 8] , the number of cell greater than    20000     is very costly 

for the computers of these days.    Therefore, the use of this computational method 

for practical hull form design may be premature. 

The other defficulty arises from the complicated nonlinear fluid motion,    i. e. , 

wave breaking and turbulence.    Both are related to the energy dissipation of fluid 

flow.    A deal of effort is being or going to be devoted to the numerical simulation of 

turbulence with proper resolution of sub-grid-scale motions, which will be intimately 

connected with the computation of stern waves that play    a certain role in wave 

resistance.    In this paper a free-slip boundary condition is used and the kinematic 

viscosity is assumed zero, which is an inevitable consequence of the coarse cell 

division as well as of the difficulty in the treatment of the turbulent flow at present. 

The TUMMAC-IV method is under development,  and unfortunately the pressure 

distribution on the hull surface and the integrated value of wave resistance cannot be 

included in this paper.    In the near future more advanced computations will be carried 

out by a super-computer HITAC S-810   and will be reported together with pressure 

distributions and values of wave resistance. 
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Fig.  1 Block diagram of the TUMMAC method. 
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Fig.  4        Computed wave height contours of a Wigley's hull at  Fn= 0.267 (abovel and 

Fn= 0.316 (below), the interval is 0. 02 FI  (=U^/2g). 

450 



0.125 

0.000 
-0.250 ■0.125 0.000 0.125 0.250 

X    (M ) 

T/DRAUGHT 
2 

0.375 0.500 

X/DRAUGHT 

Fig.  5        Computed (above) and measured (below) wave height contours of a Wigley's 

hull at Fn= 0.289. 
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